Библиотека

Теология

Конфессии

Иностранные языки

Другие проекты







Комментарии (2)

Дубнищева Т. Концепции современного естествознания. Учебное пособие

ОГЛАВЛЕНИЕ

Глава 2 ПОНЯТИЯ ПРОСТРАНСТВА, ВРЕМЕНИ И МАТЕРИИ
ФУНДАМЕНТАЛЬНЫЕ ВЗАИМОДЕЙСТВИЯ
2.1. Понятие «пространство»

В обыденном восприятии под пространством понимают некую протяженную пустоту, в которой могут находиться какие-либо предметы. Однако между небесными телами есть некоторое количество вещества, да и физический вакуум содержит виртуальные частицы. В науке пространство рассматривается как физическая сущность, обладающая конкретными свойствами и структурой.
Пространство и время — всеобщие и необходимые объективные формы бытия материи. «В мире, — писал В. И.Ленин, — нет ничего кроме движущейся материи, а движущаяся материя не может двигаться иначе чем в пространстве и времени». Материя объективно существует в форме вещества и поля, образует Вселенную, существующую независимо от того, ощущаем мы ее или нет.
Основные свойства пространства формировались по мере освоения человеком территорий и развития геометрии (от греч. geometriaземлемерие). Сложившиеся к III в. до н. э. знания систематизировал древнегреческий математик Евклид. В своем знаменитом произведении «Начала», состоящем из 15 книг, ставшем основой геометрии, он организовал научное мышление на основе логики. В первой книге Евклид определил идеальные объекты геометрии: точка, прямая линия, плоскость, поверхность.
Эти объекты рассматривались через некоторые характеристики реального окружающего мира или каких-либо предметов, часто для этого использовались представления о луче света или натянутой струне. Например, образ прямой линии связан с лучом света. Но было известно, что в неоднородных средах световой луч преломляется; и сам же Евклид получил закон равенства углов отражения и падения, а Аристотель рассуждал о кажущемся преломлении палки, погруженной частично в воду. Исходя из наиболее простых свойств линий и углов Евклид путем строгих логических доказательств пришел в планиметрии к формулировке условий равенства треугольников, равенства площадей, теореме Пифагора, к золотому сечению, кругу и правильным многоугольникам. В книгах V—VI и X он излагает теорию несоизмеримых Евдокса и правила подобия, VII—IX — теорию чисел, а в последних трех — геометрию в пространстве. От телесных углов, объемов параллелепипедов, призм, пирамид и шара Евклид переходит к исследованию пяти правильных («Платоновых») тел и доказательству, что их существует только пять. 44

Изложение Евклида построено в виде строго логических выводов теорем из системы аксиом и постулатов (кроме системы определений). Согласно им и определены основные представления о пространстве, которые использованы И. Ньютоном в его «Математических началах натуральной философии» (1687):
однородность — нет выделенных точек пространства, параллельный перенос не изменяет вид законов природы;
изотропность — в пространстве нет выделенных направлений, и поворот на любой угол сохраняет неизменными законы природы;
непрерывность — между двумя различными точками в пространстве, как близко бы они не находились, всегда есть третья;
трехмерность — каждая точка пространства однозначно определяется набором трех действительных чисел — координат;
«евклидовость» — описывается геометрией Евклида, в которой, согласно пятому постулату, параллельные прямые не пересекаются или сумма внутренних углов треугольника равна 180°.
Пятый постулат геометрии Евклида привлекал к себе особое внимание, и некие его эквиваленты привели в XIX в. к возможности иных геометрий, в которых сумма углов треугольника больше (геометрия Римана — геометрия на сфере) или меньше 180° (геометрии Лобачевского и Больяйи).
Положение тел в окружающем пространстве определяется тремя координатами (долгота, широта, высота), т.е. наглядным представлениям соответствует трехмерность пространства. Птолемей в своем труде «Альмагест» утверждал, что в природе не может быть более трех пространственных измерений. Для определения положения в пространстве Р.Декарт обосновал единство физики и геометрии. Развив идею близкодействия, он объяснял все явления природы механическим взаимодействием частиц, он запомнил мир тонкой материей — эфиром. Он ввел прямоугольную систему координат («декартовы координаты») — х, у, z. Для описания орбит планет при их движении вокруг Солнца удобнее сферическая система координат, вьщеляющая положение Солнца и учитывающая, что гравитационное поле убывает одинаково по всем направлениям. Выбор системы координат — это просто выбор способа описания, и он не может влиять на свойства континуума, который нужно описать. Пространства и континуумы независимо от способа описания обладают своими внутренними геометрическими свойствами (например, кривизной). Пространство называют искривленным, если в него невозможно ввести координатную систему, которая может считаться прямолинейной. Иначе — оно плоское.
Физический мир Декарта состоит из двух сущностей: материи (простой «протяженности, наделенной формой») и движения. Поскольку 45

«природа не терпит пустоты» (Аристотель), протяженность заполнена «тонкой материей» — эфиром, которую Бог наделил непрерывным движением. Декарт описал все процессы своими механическими законами движения и построил «космологический роман» (трактаты «Мир» и «Начала философии»). Декартово представление о флюидах, заполняющих пространство, господствовало в науке XIX и частично XX вв., оказав существенное влияние на развитие оптики и электричества. Вес, как и любая сила, у Декарта — свойство движения тонкой материи, отождествляемой с пространством. Поэтому механицизм Декарта сводит силы к свойствам пространства.
Живя на поверхности почти сферической, мы пользуемся геометрией на плоскости, хотя правильнее говорить, что большие круги (параллели и меридианы) — кратчайшие расстояния (что учитывается при прокладке курса самолетов, например). На геометрии Евклида построена механика Галилея—Ньютона, где тела движутся криволинейно только под действием сил. Ньютон пришел к идее абсолютных пространства (бесконечной однородной протяженности) и времени (бесконечной однородной длительности). Каждый объект обладает в пространстве определенным положением и ориентацией, а расстояние между двумя событиями точно определено, даже если они произошли в разные моменты времени.
Положение Rтела в пространстве определяется только относительно системы каких-то объектов: у Ньютона — относительно инерциальных систем отсчета. Так как ощущается лишь неравномерное движение (а не движение с постоянной скоростью), имеет смысл говорить об изменении скорости v = dR/dtтела в пространстве, и движения определяются только ускорением aW = dv/dt. Ньютон перевел эти, сугубо обыденные, ощущения на математический язык, у него все равномерные движения относительны, а ускоренные — абсолютны. Причины, вызывающие ускоренные движения, он назвал силами. Силы F пропорциональны ускорению тел с коэффициентом М, называемым инертной массой: F = МaW. Если этот закон Ньютона прочесть справа налево, видно, что части системы при равномерном движении не испытывают силового воздействия. Значит, механическими средствами равномерное движение нельзя отличить от другого такого же и пространство само по себе не оказывает силового воздействия на движущиеся тела.
Механика Ньютона позволяет наблюдать только ускоренные движения, а ускорение ведет к возникновению в системе отсчета движущегося тела сил инерции. Таковы, например, давление ног человека, направленное вниз при кратковременной остановке лифта, движущегося в направлении вверх, или центробежная сила на вращающейся карусели. Приписывая появление сил инерции пространству, в котором происходит ускорение, Ньютон доказывал реальность его существования. Оно — субстанция, способная динамически действовать на материальные тела.
46

Создание теории электромагнитного поля дало возможность использовать оптические явления для измерения скорости движения в пространстве: свет должен распространяться в эфире (некоей жидкости, заполняющей пространство) с постоянной скоростью, зависящей от «упругости» эфира, а скорость света, измеренная наблюдателем, должна зависеть от направления распространения света. Но проведенный А. Майкельсоном и Э. Морли опыт показал, что никакого эффекта, связанного с эфиром, нет (1887). Пришлось отказаться от эфира и наглядных представлений Ньютона о пространстве и времени, и А. Эйнштейн предложил (1905) свою специальную теорию относительности (СТО).
В основе СТО лежат два постулата: скорость света в вакууме постоянна и не зависит от движения наблюдателя или источника света; все физические явления (механические и электродинамические) происходят одинаково во всех телах, движущихся относительно друг друга прямолинейно и равномерно. Это означало сокращение длин и замедление течения времени в соответствии с преобразованиями Лоренца для тел, движущихся со скоростями, близкими к скорости света. «Отныне пространство и время, взятые по отдельности, обречены влачить призрачное существование, и только единство их обоих сохранит реальность и самостоятельность» (Г. Минковский). Изменения длин и времен ощутимы лишь при скоростях, близких к скорости света; при меньших скоростях движение происходит по законам классической механики. В таком пространстве-времени уже удобнее криволинейные координаты. В разных системах координат по-разному будут выглядеть математические записи законов физических явлений. Итак, в СТО время и пространство объединяются в четырехмерное пространство-время.
В конце XIX в. появились неевклидовы теории пространства— различные варианты геометрии Н. И. Лобачевского, Я.Больяйи и Г. Ф. Б. Римана. Они отвергали один из постулатов Евклида — в них через точку можно провести несколько прямых, параллельных заданной, или ни одной, соответственно. Проверкой было бы измерение суммы внутренних углов треугольника, но измерения Гаусса и Лобачевского не обнаружили отклонений физического пространства от евклидового. Пространство Римана, в котором сумма углов больше 180°, соответствует геометрии на сфере и легло в основу общей теории относительности (ОТО) — обобщенной теории тяготения, разработанной Эйнштейном (1916). При наличии в пространстве тяготеющих масс (т.е. и поля тяготения) пространство искривляется, становится неевклидовым. Движения тел в нем происходят по кратчайшему пути — по геодезическим линиям. Свойства пространства-времени определяются распределением и движением материи в пространстве. 47

Хотя в ОТО соотношение между количеством материи и степенью кривизны простое, но сложны расчеты — для описания кривизны в каждой точке нужно знать значения 20 функций пространственно-временных координат. Десять функций соответствуют части кривизны, которая распространяется в виде гравитационных волн, т. е. в виде «ряби» кривизны; остальные десять определяются распределением масс, энергии, импульса, углового момента, внутренних напряжений в веществе и значениями универсальной гравитационной постоянной G. Из-за малости величины Gнужно много масс, чтобы существенно «изогнуть» пространство-время. Величину 1/Gподчас считают мерой жесткости пространства-времени (и наше пространство-время очень жесткое). Вся масса Земли создает кривизну, составляющую порядка 10-9 кривизны своей поверхности. Чтобы представить кривизну пространства-времени вблизи Земли, подбросим мяч в воздух. Если он будет находиться в полете 2 с и опишет дугу в 5 м, то свет за эти 2 с пройдет расстояние 600 000 км. Если представить дугу высотой 5 м, вытянутую по горизонтали до 600 000 км, то ее кривизна и будет соответствовать кривизне пространства-времени. В отличие от теории гравитации Ньютона теория Эйнштейна претендует на теорию пространства-времени, т. е. на теорию Вселенной в целом.
Большинство экспериментальных данных о гравитации хорошо описывается в пространстве Евклида или в динамике Ньютона, но есть немногочисленные явления (отклонение света в поле тяготения или смещение перигелия Меркурия), которые противоречат теории Ньютона и хорошо объясняются в ОТО.
Характер физических законов существенно зависит от масштаба исследуемых явлений, и принято говорить о микро-, макро- и мегамире. Объектами микромира являются атомные ядра и молекулы, атомы и элементарные частицы. К объектам макромира относят живую клетку, человека и соизмеримые с ним предметы. Мегамир — это планеты, Солнце, звезды, галактики и вся Вселенная в целом. В мегамире существенную роль играют эффекты СТО и ОТО, преобладающим взаимодействием является гравитационное. В макромире законы движения тел определяются классической механикой, а в микромире — квантовой физикой.

2.2. Масштабы расстояний во Вселенной. Методы оценок размеров и расстояний

Бесконечность и огромность Вселенной вызывают чувство восхищения и трепета.
Так, немецкий физик, изобретатель воздушного насоса, показавший существование давления воздуха (опыт с «магдебургскими полушариями») и изучивший многие его свойства, О. фон Герике ставил опыты, чтобы доказать, что Вселенная пуста, вездесуща и бесконечна. Это противоречило науке начала XVII в. Он писал, что его в стремлении узнать строение мира прежде всего потрясла невообразимая протяженность
48

Вселенной. Она-то и возбудила в нем не дающее покоя стремление увериться, чем является то, что распространяется между небесными телами: «Чем же, в сущности, оно является? А ведь оно содержит все и дает место для бытия и существования. Может быть, это какая-то огненная небесная материя, твердая (как утверждали аристотелики), жидкая (как думают Коперник и Тихо Браге) или какая-нибудь прозрачная пятая эссенция? Или же пространство свободно от всякой материи, т.е. есть постоянно отрицаемая пустота».
Расстояния в мире звезд измеряют в световых годах (1 св. год ≈ ≈ 9,5 • 1012 км), или в парсеках (1 пк = 3,26 св. года = 206 265 а.е. = = 3,1 • 1016 м). Расстояние от Земли до Солнца в 1 а.е. (астрономическая единица) ≈ 150 млн км, его свет преодолевает за 8,5 мин. Луна находится на расстоянии около 1 св. с, или 384 тыс. км, или 60 радиусов Земли. Поперечник Солнечной системы — несколько световых часов, а ближайшая звезда (Проксима созвездия Центавра) находится на расстоянии около 4 св. лет.
В древности у разных народов были и различные представления о Земле и ее форме. Так, индусы представляли себе Землю в виде плоскости, лежащей на спинах слонов; жители Вавилона — в виде горы, на западном склоне которой находится Вавилония; евреи — в виде равнины и т.д. Но в любом случае считалось, что в некоем месте небесный купол соединяется с земной твердью. Своему появлению и развитию наука о Земле, география, во многом обязана древним грекам, представлявшим мир в виде круглой лепешки с Грецией в центре. Гекатей Милетский даже вычислил ее диаметр — 8000 км. Для наших далеких предков ориентация в пространстве имела огромное значение. Порядок обеспечивал безопасность.
В Месопотамии и Египте наблюдения за небом составляли прерогативу жрецов и связывались састрологией. Люди заметили, что планеты перемещаются на фоне звезд (от греч. planetes— блуждающий). Они стали делать модели окружающего человека мирового пространства, модели Мира. В центр Мира ставился человек и, следовательно, наша Земля. Такое выделенное положение человека соответствовало представлениям наблюдателя. Аристотель дал натурфилософское обоснование такой системы: он представлял космос как большое число связанных друг с другом материальных сфер, каждая из которых подчиняется своим законам. Видимое движение небесных тел с востока на запад он не мог объяснить и ограничился высказыванием: «Природа всегда осуществляет лучшую из возможностей». Другой ученик Платона Эвдокс попытался найти кинематику планет исходя из гипотезы движения по идеальной кривой — окружности. Для этого ему пришлось подбирать скорости и направления движений трех (а потом — семи) сфер для описания видимого движения Солнца и Луны и 26 сфер — для планет. Аристотель использовал уже 56 сфер, а математик Аполлоний предложил теорию эпициклов: планета движется по круговой орбите, центр которой описывает круг вокруг Земли. Эту систему развил знаменитый астроном Гиппарх, составивший первый каталог из 850 звезд, выделивший созвездия и открывший прецессию земной оси. Его считают одним из основателей астрономии. У Аристотеля все не-
49

бесные движения происходили по идеальным траекториям, тогда как на Земле законы движения иные. Представления Аристотеля были канонизированы церковью и сохранялись почти 20 веков.
Геоцентрическая система Мира (Солнечной системы) связана с александрийским астрономом Птолемеем, который обобщил существовавшие до него представления. Согласно модели Птолемея, изложенной в его сочинении «Альмагест» («Великое построение»), вокруг шарообразной и неподвижной Земли движутся Луна, Меркурий, Венера, Солнце, Марс, Юпитер, Сатурн и небо неподвижных звезд. Сфера неподвижных звезд окружена жилищем блаженных, где помещен «перводвигатель». Центры подвижных светил движутся по кругам, эксцентричным по отношению к Земле. Для планет пришлось вводить систему окружностей — эпициклов. Система была громоздкой, по мере накопления материала еще более усложнялась, но помогла в первом приближении разобраться в астрономических явлениях. В течение многих столетий геоцентрическая система считалась единственно верной — она согласовывалась с библейским описанием сотворения мира. И только в период Возрождения началось иное развитие мысли.
Гелиоцентрическая система (от греч. helios— солнце) связана с именем польского ученого Н. Коперника. Он возродил гипотезу пифагорейца Аристарха Самосского о строении Мира: Земля уступила место центра Солнцу и оказалась третьей по счету среди вращающихся по круговым орбитам планет. Коперник путем сложных математических расчетов объяснил странные видимые передвижения, разные для внешних (Марс, Юпитер, Сатурн) и внутренних (Меркурий, Венера) планет, их движениями вокруг Солнца. В своей книге «Об обращениях небесных сфер» (1543) он утверждал, что планеты — спутники Солнца. Когда Земля, двигаясь вокруг Солнца, обгоняет другую планету или отстает от нее, нам кажется, что планеты движутся то назад, то вперед. Учение Коперника нанесло удар по сложившимся представлениям об устройстве Мира и имело революционное значение для последующего развития науки в целом. Оно разрушило разницу в законах движения на небе и на Земле и установило идею единства мира. Как выразился А. Эйнштейн, Коперник «призвал человека к скромности». Через 73 года после смерти Коперника и выхода книги церковь запретила ее, и лишь в 1828 г. этот запрет сняли. Но Коперник все же предполагал наличие центра Вселенной, в который поместил Солнце, и этот недостаток теории исправили уже другие. Так, одним из первых в защиту учения Коперника (центральное место — Солнца, а не Земли) высказался Дж. Бруно, который считал Вселенную бесконечной с множеством солнц и планет.
Вращение Земли вокруг Солнца доказывается по наличию годичного параллакса звезд, а вращение ее вокруг своей оси — с помощью сохранения направления колебаний маятника Фуко. 50

Размеры планет определяют тщательным наблюдением за их движениями. Так, Меркурий — ближайшая к Солнцу планета — всегда находится близко к нему, при наблюдении с Земли его отклонение (наибольшая элонгация) может быть до 23°, тогда как для Венеры (второй от Солнца планеты) — 43 — 48°. Радиус орбиты Меркурия порядка 0,38а радиуса земной орбиты, где а = 1 а. е., а Венеры — 0,7 а. е.
Размеры Земли оценил удивительно точно Эратосфен еще во II в. до н. э., измерив угловое отклонение Солнца от зенита в Александрии в 7°30', тогда как в Сиене (современный Асуан) оно было в зените. При этом 7°30' составили такую долю от 360°, какую составляет расстояние 800 км между городами от полной длины окружности Земли. Так он получил эту длину — 40 000 км, сейчас 40075,696 км (рис. 2.1). Поскольку она равна 2πR, определил радиус Земли в 6400 км (в геодезии этот метод называется методом периангуляции).
Имея пропорции, можно построить и примерную схему Солнечной системы. Для получения абсолютных значений расстояний в ней нужно знать радиус орбиты хотя бы одной планеты. Его можно определить с помощью радара. Сейчас все расстояния определены достаточно точно и разными методами. При радиолокационном методе на исследуемый объект посылают мощный кратковременный электромагнитный импульс, а затем принимают отраженный сигнал. Скорость распространения электромагнитных волн в вакууме с = 299 792 458 м/с. Если точно измерить время, которое потребовалось сигналу, чтобы дойти до объекта и обратно, то легко вычислить искомое расстояние. Радиолокационные наблюдения позволяют с большой точностью определить расстояния до небесных тел Солнечной сис- 51

темы. Этим методом уточнены расстояния до Луны, Венеры, Меркурия, Марса, Юпитера.
Параллакс — угловое смещение предмета, которым можно характеризовать расстояние до него. Из практического опыта известно, что скорость изменения направления на предмет при движении наблюдателя тем меньше, чем дальше объект находится от наблюдателя. Метод геометрического параллакса (триангуляции) позволяет измерять расстояние в макромире, используя теоремы евклидовой геометрии (рис. 2.2, а). Явление геометрического параллакса — основа стереоскопического зрения человека и животных. Методом параллакса определяют расстояние до ближайших планет (рис. 2.2, б). Можно обнаружить смещение и при перемещении наблюдателя из-за суточного движения Земли, будто он переместился из центра Земли в точку экватора, из которой планета кажется находящейся на горизонте. Угол, под которым со светила виден экваториальный радиус Земли, перпендикулярный лучу зрения, называют суточным параллаксом. Средний суточный параллакс Солнца равен 8,794", Луны — 57,04'.
Метод геометрического параллакса также пригоден для определения расстояний до ближайших звезд, если в качестве базиса использовать не радиус Земли, а диаметр земной орбиты. Он позволяет оценить расстояние до 100 св. лет (рис. 2.2, в). Годичный параллакс звезды — это угол (к), на который изменится направление на звезду, если наблюдатель переместится из центра Солнечной системы на земную орбиту в направлении, перпендикулярном направлению на звезду. Иначе говоря, это угол, под которым со звезды видна большая полуось земной орбиты, расположенная перпендикулярно лучу зрения (рис. 2.2, г). С годичным параллаксом связана и основная единица измерения расстояний между звездами — парсек (от параллакс и секунда): 1 пк = = 206 265 а. е. = 3,263 св. года = 3,086 • 1016 м. Так, ближайшая к нам звезда Проксима Центавра при я = 0,762" находится на расстоянии 1,31 пк, Альфа того же созвездия Центавра при я = 0,751'' — на расстоянии 1,33 пк, а известная звезда Сириус (Альфа Большого Пса) — 0,375" и 2,66 пк, соответственно.
Хотя диаметр земной орбиты и равен 3-1011 м, из-за огромного расстояния до звезд измерять углы достаточно сложно. Небо фотографируют одним телескопом через полгода. При наложении фотографий изображения большинства звезд совпадут друг с другом, но для ближайших звезд окажутся смещенными. Отношение этого малого смещения к фокусному расстоянию телескопа даст тот же угол, что и отношение базиса к расстоянию до звезды. Смещение изображения для ближайшей звезды равно примерно 1" для фокусного расстояния 10 м и составит на фотопластинке 50 • 10-6 м, или 50 мкм, что можно измерить только под микроскопом. Ближайшая к Солнцу звезда в созвездии Центавра находится на расстоянии 4,3 св. года, в 272 000 раз дальше, чем Земля от Солнца.
52

Рис. 2.2. Метод триангуляции:
а — определение расстояний до корабля (по предложению Фалеса); б — определение расстояния до Марса (в единицах радиуса Земли); в — определение расстояний до близких звезд (годичный параллакс); г — определение расстояний до далеких звезд (годичный параллакс). (1 а. е. = = 1,5 1011 м)

Когда не было приборов для точного определения углов, использовали такой метод. Если из двух одинаково ярких тел одно находится на расстоянии в я раз большем, чем другое, то близкое тело кажется в п2 раз ярче. Например, Солнце в 106 раз в квадрате ярче Сириуса, следовательно, Сириус в миллион раз дальше от Земли, чем Солнце. Яркость других звезд можно сравнить по тому же правилу с яркостью Сириуса и т.д. Сириус отстоит от нас на расстоянии примерно 10 св. лет.
53

Из распределения звезд по небу следует, что они образуют круговой диск в 105 св. лет, так как яркость самых слабых звезд примерно в 108 раз меньше яркости Сириуса. Толщина этого диска около 104 св. лет. Среднее расстояние между звездами в Галактике примерно 10 св. лет, отсюда среднее число звезд — 50 млрд. Когда мы смотрим в направлении центра Галактики, видим огромное скопление звезд — Млечный Путь. Солнце находится на расстоянии примерно в 2/3 от центра до края Галактики в одном из ее рукавов. От слабых звезд Млечного Пути свет идет до Земли десятки тысяч лет — так далеки они от нас. Большинство звезд Млечного Пути не видно невооруженным глазом, хотя многие из них являются белыми и голубовато-белыми гигантскими звездами, излучающими энергии в десятки тысяч раз больше, чем Солнце — типичный желтый карлик с температурой поверхности 6000 К. Для земного наблюдателя спиральные ветви экваториального пояса Галактики проецируются в виде светлой полосы Млечного Пути, составляющего основу Галактики (от греч. galaktikosмлечный, молочный).
Другие галактики видны в телескопы как небольшие туманные пятна, их и назвали туманностями. Как определить расстояния до них? Полная яркость туманности Андромеды примерно такая же, как и у звезды, расположенной на расстоянии 10 св. лет. С помощью мощных телескопов выяснено, что в других галактиках приблизительно столько же звезд, сколько в Млечном Пути. Значит, эта туманность в 50 млрд раз ярче отдельной звезды Галактики, и расстояние до нее должно быть в  раз больше, чем до отдельных звезд, т.е. произведения этого числа на 10 св. лет, или около 2 млн св. лет. Эта грубая оценка примерно соответствует тому, что дают другие методы. Расстояние от Галактики до туманности Андромеды в 20 раз больше диаметра Галактики, т. е. свет, идущий от нее и который мы видим сейчас, покинул эту Галактику, когда на Земле еще не было людей, но жизнь уже зародилась.
Расстояния до ближайших галактик определяют методом измерения сравнительной яркости исходя из закона убывания интенсивности точечного источника пропорционально квадрату расстояния. Для больших расстояний подходящего базиса уже не найти, и потому используют свойства света и зависимость частоты света от скорости излучающего объекта (эффект Доплера). Эти далекие галактики представляют собой островные вселенные, каждая из которых содержит миллиарды звезд.
Так как подавляющее большинство известных нам звезд слишком далеки, чтобы методом параллакса можно было вычислить расстояние до них, пришлось придумать иные методы. Один из них основан на изучении цефеид, распространенного и очень важного типа физически переменных звезд. Цефеиды — это нестационарные пульсирующие звезды, которые периодически раздуваются и сжимаются, меняя свой блеск. Между периодом пульсаций цефеид и их светимостью существует зависимость, получившая название «период-светимость». По ней можно
54

определить светимость и вычислить расстояние до цефеиды, если из наблюдения известны видимый блеск и период изменения блеска цефеиды. Цефеиды видны с больших расстояний, и, обнаруживая их в далеких звездных системах, можно определять расстояние до этих систем.
В 20-е гг. XX в. американский астроном Э. Хаббл по фотографиям туманности Андромеды, полученным на крупнейшем телескопе того времени, измерил характеристики отдельных звезд и дал несколько независимых оценок расстояния до нее. Так он доказал, что туманность Андромеды находится вне Млечного Пути. Затем Хаббл исследовал Вселенную до огромного расстояния — 500 млн св. лет. Хотя не все открытые туманности оказались галактиками, ученый выявил в этой области до 100 млн других галактик. В настоящее время во Вселенной обнаружены галактики разных типов, и их число примерно около 10 млрд.
В науке производятся количественные сравнения, и потому важны измерения. Измерение — это определение неизвестной величины известной установленной единицей меры. Однородность и изотропность пространства определяют возможность измерять расстояния с помощью единого эталона длины. Расстоянием между двумя точками принято называть длину отрезка, соединяющего эти точки. Измерения с помощью эталона требуют непосредственного контакта с точками, между которыми измеряется расстояние. За исключением простейших случаев измерений (с помощью линейки или рулетки) такой способ основан на кинематике — разделе механики, дающем математическое описание всевозможных видов механического движения безотносительно к тем причинам, которые обеспечивают осуществление каждого конкретного вида движения.
Для измерений длины в физике пользуются метрической системой, которая сложилась исторически и связана с периодом Великой французской революции. Первоначально метр был определен как одна десятимиллионная доля расстояния от экватора до Северного полюса вдоль меридиана, проходящего через Париж. В 1889 г. метр официально был определен как расстояние между двумя параллельными метками, нанесенными на платиноиридиевом брусе. Он хранится в строго определенных условиях в Международном бюро мер и весов в Севре, пригороде Парижа. Сравнить длину тела с эталонным метром с погрешностью до 2 • 10-7 можно с помощью прецизионного микроскопа. Эта точность определяется толщиной меток. В 1961 г. в качестве эталона длины была принята длина волны в вакууме оранжевого света, испускаемого изотопом Кr-86. В точности 1 м составляет 1 650 763,73 длины волны Кr-86. В 1983 г. на XVII Генуэзской конференции по мерам и весам было принято новое определение метра: «Метр — длина пути, проходимого светом в вакууме за 1/299792458 долю секунды».
В микромире расстояния измеряют при помощи явлений дифракции пучков фотонов или других элементарных частиц на кристаллических решетках. В качестве эталона в этом
55

случае выступает длина волны, которая в соответствии с положениями корпускулярно-волнового дуализма описывает поведение частиц в пучке. В микромире используют единицы длины 1 мкм = = 10-6 м; 1 нм = 10-9 м. Длина волны красного цвета — 720 нм, а фиолетового — 430 нм. Размер пылинки 10-4 м, диаметр молекулы ДНК 2 • 10-9 м, атома водорода 3 • 10-11 м.

2.3. Понятие «время» в своем развитии

Время, как и пространство, имеет объективный характер. Они неотделимы от материи, связаны с ее движением и друг с другом. По выражению И. Пригожина, «для большинства основателей классической науки (и даже А. Эйнштейна) наука была попыткой выйти за рамки мира наблюдаемого, достичь вневременного мира высшей рациональности — мира Спинозы». Фактически все картины мира, рожденные точной наукой, освобождены от развития, «отрицают время».
Понимание времени, увлекающего мир в непрерывное движение, наиболее ярко выразил Гераклит (ок. 530 — 470 до н.э.): «В одну реку нельзя войти дважды», «Все течет, все изменяется», «Мир является совокупностью событий, а не вещей». Законы природы неизменны, они сохраняются в любом месте и в любое время. У Прокла (ок. 412 — 485) для большей строгости к понятию времени применены геометрические рассуждения: «Время не подобно прямой линии, безгранично продолжающейся в обоих направлениях. Оно ограничено и описывает окружность. Движение времени соединяет конец с началом, и это происходит бесчисленное число раз. Благодаря этому время бесконечно». Платон (ок. 428 — 347 до н. э.) писал: «Поскольку день и ночь, круговороты месяцев и лет, равноденствия и солнцестояния зримы, глаза открыли нам число, дали понятие о времени и побудили исследовать природу Вселенной». Архимед в трактате «О спирали» показывал, что спираль соединяет цикличность с поступательным движением. Может быть, спираль подойдет для наглядного образа времени, соединив поток и окружность?! Узор из спирали с солнцами был найден на остатках кувшинов неолита и на древнем календаре — жезле из бивня мамонта, обнаруженном недавно в Восточной Сибири. Археологи истолковывают эти узоры как отображение идеи Времени.
Первую физическую теорию времени дал Ньютон: «Абсолютное, истинное математическое время, само по себе и по самой своей сущности, без всякого отношения к чему-либо внешнему, протекает равномерно и иначе называется длительностью». Абсолютное время — идеальная мера длительности всех механических процессов. Как не наблюдаемо истинно равномерное движение, так и измерить время можно, только приближаясь к истинному, математическому, входящему в уравнения. Абсолютное время однородно, это означает симметрию относительно
56

сдвигов. Значит, и точка отсчета времени не имеет значения, она не меняет длительность. То же можно сказать и о пространственных симметриях классической механики. В пространстве нет выделенных ни точек, ни направлений, т. е. оно однородно и изотропно. Ньютон не только исключил время из своей картины Вселенной, но и утвердил его в сознании как внешний параметр. Стало возможным рассматривать непрерывные периодические процессы равной длительности для построения модели, легко вводить метрику времени. Это позволило построить всю систему мира, подтвердить впечатляющие предсказания теории Ньютона для Вселенной.
Непрерывность времени означает, что между двумя моментами времени, как близко бы они не располагались, всегда можно выделить третий. (Сегодня нет достаточных оснований, чтобы говорить о дискретности времени.) Особым свойством времени является его однонаправленность или необратимость. Это свойство времени рассматривают как следствие второго Начала термодинамики, или Закона возрастания энтропии. В классической физике существует абсолютное, «вселенское время». Г.Лейбниц считал время относительным, «порядком последовательностей». Но в современной физике не существует единого «всемирного» хода времени. В биологии и геологии время рассматривали иначе. Так, основоположник геологии датчанин Н.Стенсен строил пространственные отношения не на основе движения или перемещения тел в нем, а с точки зрения временной последовательности «раньше — позже». Этот подход естествен для геолога, рассматривающего историю планеты через наслоения в камне.
Пространственно-временной континуум — новое средство характеристики физических явлений, используя которое для описания событий в природе нужно применять не два, а четыре числа, дала СТО. С точки зрения Эйнштейна, физическое пространство, постигаемое через объекты и их движения, имеет три измерения и положение объектов характеризуется тремя числами. Момент события — четвертое число. Потому мир событий есть четырехмерный континуум. У Эйнштейна не имеет смысла деление этого мира на время и пространство, поскольку описание мира событий «посредством статической картины на фоне четырехмерного пространственно-временного континуума» более удобно и объективно. Измеренное значение времени оказалось зависимым от движения наблюдателей.
Время для движущегося наблюдателя течет медленнее, чем
для неподвижного: Этот эффект замедления
может быть заметен лишь для скоростей, сравнимых со скоростью света в вакууме с. По выражению Вернадского, СТО «отрицала только независимое от пространства, абсолютное время,
57

но не придавала ему никаких новых свойств — принимала его тем же изотропным, аморфным временем, каким понимал его Ньютон». Таким образом, традиция классической физики сохранена.
Обсудим явление, известное как «парадокс близнецов». Пусть, например, А. и В. — близнецы. В. улетает с большой скоростью в далекое космическое путешествие, А. остается на Земле. Через какое-то время В. возвращается и оказывается моложе А. Если v— скорость, с которой путешествовал В., а τ0 — время, которое прошло на Земле за время его путешествия, то время, которое прошло на борту его корабля
, где с = 3 • 108 м/с — скорость света в вакууме. И чем больше скорость v, тем значительнее будет разница. Причем тот, кто почувствовал ускорение, тот и окажется моложе. Например, собственное время жизни π+-мезона составляет 2,5 • 10-8 с. Если бы не было релятивистского замедления времени, то до распада такая частица проходила бы в среднем расстояние (2,5 10"8 с) • (3 • 108 м/с) ≈ 7 м. Но, как показывает опыт, проведенный на ускорителях, эти частицы способны проходить значительно большие расстояния, если их скорость сравнима со скоростью света. Поэтому всегда необходимо уточнять, относительно какого тела и связанной с ним системы координат оно рассматривается.
Задержка времени, предсказанная СТО, подтверждается μ-мезонами, распадающимися во время полета к Земле от места возникновения в верхних слоях атмосферы. Это показывают детекторы, установленные на воздушных шарах, на поверхности Земли и в шахтах (рис. 2.3, а). Согласно СТО, с увеличением относительной скорости, кроме замедления времени, уменьшаются линейные размеры тел вдоль направления движения и увеличивается масса (L0и М0 — линейные размеры и масса тела в состоянии
покоя):
Свойства пространства-времени в ОТО зависят от распределения тяготеющих масс, и движение тел определяется кривизной пространства-времени (рис. 2.3, б, в). Но влияние масс сказывается только на метрических свойствах часов, так как меняется лишь частота при переходе между точками с разными гравитационными потенциалами. Иллюстрацией относительного хода времени, по мнению Эйнштейна, могло бы стать обнаружение процессов вблизи предсказанных им черных дыр.
А. Эйнштейн в фундаментальных законах физики не допускал необратимости, его беспокоила направленность времени, связанная со вторым началом термодинамики. Хотя решение, соответствующее нестационарной Вселенной, полученное А.А.Фридманом из его космологических уравнений, позднее было подтверждено наличием красного смещения в спектрах далеких галактик, установленного Э. Хабблом, Эйнштейн считал гипотезу взрывающейся Вселенной временной и относился к ней с недоверием. В 60—80-е гг. XX в. отношение к эволюционным процессам
58


стало меняться, мир предстал существенно нелинейным с необратимыми процессами в своей основе. Поэтому и времени в новой эволюционной картине мира уготована иная роль.
Для определения момента произошедшего события обычно достаточно одного измерения, указания только одного числа. Такое восприятие времени настолько привычно, что большее число измерений для времени трудно вообразить. Но наблюдаемые события происходят от прошлого к будущему. И это качественно отличает временное измерение от пространственного, причем для любого наблюдателя в данной точке пространства последователь-
59


ность событий сохраняется. Можно сказать, что понятия «прошлое» и «будущее» в данной точке пространства есть понятия абсолютные. Для пространственных осей нет такого выделения направлений, и поворот на 180° вокруг оси, перпендикулярной линии, которая соединяет два одновременных события, переводит происходящее слева от наблюдателя событие в правое. То есть понятия «правое» и «левое» относительны для одновременных событий. Направленность времени тесно связана с пониманием причинности: причина должна предшествовать следствию. Это свойство времени относится к классу нерешенных проблем в физике и во всем естествознании, в дальнейшем мы убедимся, что по этой причине в науке существует ряд парадоксальных ситуаций.

2.4. Временные масштабы во Вселенной. Методы измерения времени

История человечества — от появления первобытного человека до наших дней — кажется (весьма и весьма условно) точкой на фоне мировой эволюции. Очевидно, что вопрос «когда?» связан с вопросом «где?». По Платону, мир совершенен и потому должен быть неизменным. Тогда бы вопрос о времени не имел смысла, так как не было бы начала отсчета. На современном уровне развития науки представляется, что счет времени Вселенной начат с события, произошедшего почти 15 млрд лет назад, после которого Вселенная расширяется. Время измеряют путем наблюдения за периодически повторяющимися процессами.
Сутки были первой естественной единицей меры времени, регулировавшей труд и отдых. Сначала сутки делили на ночь и день и только много позже — на 24 часа. Сейчас понятно, что периодическая смена дня и ночи происходит из-за вращения Земли вокруг своей оси. Есть два вида солнечного времени — истинное и среднее солнечное. Промежуток времени между двумя последовательными кульминациями центра Солнца на одном и том же меридиане, равный периоду вращения Земли, называют истинными солнечными сутками. Но измерять ими время тоже неудобно, они в июне короче на 51 с, чем в январе. Дело в том, что Земля движется по орбите вокруг Солнца неравномерно: вблизи перигелия (в январе) ее скорость наибольшая, а вблизи афелия (в июне) — наименьшая (второй закон Кеплера). Потому и истинные солнечные сутки непостоянны (рис. 2.4), и вместо них используют сутки, равные средней длине истинных солнечных суток за год. Кроме того, из-за движения Солнца по эклиптике происходит видимое годичное движение Солнца с запада на восток, т.е. в направлении против вращения. Ввели понятие среднего Солнца, звездных суток и звездного времени.
60

Звездные сутки определяются периодом вращения Земли вокруг своей оси относительно любой звезды. Но звезды тоже имеют собственные движения. Условились определять длительность звездных суток как промежуток времени между двумя последовательными кульминациями точки весеннего равноденствия, находящейся на одном и том же меридиане. Оказалось, что из-за прецессии средние звездные сутки уменьшаются на 0,0084 с, и они на 3 мин 56 с короче средних солнечных. Звездное время очень важно в астрономии, оно определяет положение светил, а в обыденной жизни используется солнечное время. И за среднюю единицу солнечных суток приняли 24 ч 3 мин 56,5554 с звездного времени. Измерение солнечного времени основано на видимом суточном движении Солнца.
Истинный полдень наступает на разных меридианах Земли в разное время, и для удобства принято соглашение (по идее канадского ученого С.Флешинга) о делении земного шара на часовые пояса, которые проходят через 15 градусов по долготе, начиная с меридиана Гринвича. Это — Лондонский меридиан нулевой долготы, и пояс назван нулевым (западноевропейским), время 1-го часового пояса (Рим, Берлин, Осло) — среднеевропейским, а 2-го — восточноевропейским. Всего часовых поясов — 24, внутри каждого пояса время принимается одинаковым — среднепоясным. Но территориальное деление не совпадает с делением на часовые пояса, и часто их проводят приблизительно по рекам или административным границам. Примерно на 180-градусном меридиане происходит по договору линия перемены дат, т. е. день начинается в Японии и на Камчатке, потом в Сибири, Китае и Австралии, затем в Европе и Африке, потом — в Америке и заканчивается на Аляске. При пересечении линии изменения дат на самолете в восточном направлении одно и то же число приписывается двум дням, а в западном — один день теряется. Кроме того, в ряде стран указами вводят часовой сдвиг — переход
61

на зимнее или летнее время. Согласованное решение о введении поясного времени приняли на Международной конференции в 1883 г. В нашей стране, простирающейся на 11 часовых поясов, поясное время ввели в 1919 г., взяв за основу международную систему часовых поясов и существовавшие тогда административные границы. Затем были некоторые изменения.
Секунда общепринятая единица времени, примерно с периодом 1 с бьется пульс человека. Исторически эта единица связана с делением суток на 24 ч, 1 ч — на 60 мин, 1 мин — на 60 с. До 1964 г. международная единица времени была основана на суточном вращении Земли. Но продолжительность суток оказалась подверженной разным вариациям и зависящей от положения Земли на орбите при ее движении вокруг Солнца. Изменения скорости вращения на протяжении года составляют около 10-8 с. Поэтому за стандарт были выбраны средние солнечные сутки 1900 г. Но солнечные сутки примерно на 4 мин длиннее звездных, т. е. времени поворота на 360°. К 1971 г. в результате накопления отклонений разница достигла полминуты, поэтому в единицу измерения времени должны быть внесены соответствующие поправки.
Потребность в часах с более высокой точностью хода была вызвана развитием экспериментального естествознания. В XVII в. астрономы продолжали пользоваться водяными и песочными часами: Ньютон занимался усовершенствованием водяных часов; Тихо Браге пользовался песочными или ртутными часами, поскольку механические часы не давали нужной точности; Галилей проводил свои опыты с падением тел при помощи водяных часов. Галилей и Гюйгенс считаются изобретателями маятниковых часов. Это изобретение не только открыло новую эпоху в хронометрии, но и имело далеко идущие последствия для развития науки. Галилей обнаружил изохронность колебаний маятника, и поиск колебательных динамических систем привел к более точным стандартам в измерении времени. В честь изобретения маятниковых часов XVIII в. часто называют «веком часов».
Если маятниковые часы могли обеспечить точность хода 0,1 с, то к началу XX в. применение свободного анкерного хода повысило точность маятниковых часов на порядок. Использование средств электротехники и двух маятников позволило повысить точность астрономических часов в 1921 г. до 0,001 с. Применение особо прочных сплавов для изготовления пружин позволило повысить точность и бытовых часов. Наибольший прогресс в повышении точности хода (на 2—3 порядка) был достигнут при использовании электронной схемы в сочетании с новыми осцилляторами — кварц, камертон, атом, молекула. Изобретение и усовершенствование кварцевых часов в 20 —30-е гг. связано с развитием пьезотехники, что позволило довести точность измерения секунды до (3 — 4) 10-11 и дало возможность уловить малые колебания вращения Земли вокруг оси.
Но есть и другие устойчивые источники колебаний, способные длительное время поддерживать определенную частоту колебаний. Развитие радиочастотной спектроскопии и электроники дало
62

возможность создать атомные часы и перейти к измерению с помощью атомных стандартов, основанных на колебаниях определенного типа в атоме цезия, что позволило замечать отклонение от равномерности хода с погрешностью до 10-10. Атомная секунда — интервал времени, в течение которого совершается почти 10 млрд колебаний атома Cs. Это число согласуется с наилучшими астрономическими определениями секунды. В 1967 г. в качестве эталона был выбран изотоп 133Cs. В настоящее время эталоном времени является водородный мазер, изготовленный в Швейцарии, с шириной спектра 1 Гц, стабильность которого доведена до 10-12. С 1 января 1971 г. все страны мира перешли на отсчет микровремени с помощью атомных часов. Существуют уже и более стабильные стандарты времени (и частоты) — система «оптические часы», созданная из цепочки сверхстабильных лазеров в Новосибирске, обеспечивает стабильность на два порядка лучшую. Это даст погрешность хода 1 с в 1 млн лет! Развитие полупроводниковых радиоэлектронных приборов открыло перспективы в создании электронных и электронно-механических наручных часов с высокой точностью хода.
Календарем называют систему отсчета длительных промежутков времени, в которой установлен определенный порядок счета дней в году и указано начало отсчета. Основной предпосылкой появления календаря в древности было развитие связи трудовых процессов с ритмикой природы — сменой дня и ночи, фаз Луны, времен года и т.п., отсюда и необходимости измерять время. Еще древние заметили неукоснительную периодичность передвижения по небосводу Солнца, Луны и звезд. И эти первые наблюдения предшествовали зарождению одной из самых древних наук — астрономии. Астрономия и положила в основу измерения времени три фактора, характеризующих движения небесных тел: вращение Земли вокруг своей оси, обращение Луны вокруг Земли и движение Земли вокруг Солнца. Трудности календаря связаны с тем, что не удается найти простое соотношение между временем оборота Земли вокруг оси и вокруг Солнца. То же относится и к счету дней в лунном месяце. В западных странах наибольшее распространение получили солнечные и лунные календари. В восточных странах в календарные циклы включены астрономические явления, связанные с движением Юпитера и Сатурна. Поэтому при составлении календарей в странах Восточной Азии выделен период в 12 лет — период обращения Юпитера вокруг Солнца, при этом год в таких календарях может содержать разное число суток — 353, 354, 355, 383, 385. Выделен также 19-летний лунно-солнечный и 30-летний сатурновый циклы, входящие в 60-летний циклический календарь. Существуют календари, построенные и на движении других планет. С календарем — системой упорядоченного счета времени — связана история человеческой культуры.
63

Известно много календарных сооружений и устройств, оставшихся от древних цивилизаций. Среди них Перуанский календарь, открытый в 1939 г. с борта самолета, — огромные четкие рисунки протяженностью в десятки километров. Радиоуглеродный анализ определил возраст находки — 525 лет. Древнейший каменный календарь — английский Стоунхендж — относится к началу бронзового периода (III — II тыс. лет до н. э.). Это огромные каменные монолиты высотой более 5 м, стоящие в строгом порядке, причем центральный камень ориентирован точно на положение восхода Солнца в день летнего солнцестояния, а четыре опорных камня — на точки равноденствий. Интересны передвижные календари: персидский, вавилонский, греческий.
Внешняя проблема календаря связана с необходимостью согласования длины года с длиной суток. Были разработаны разные варианты поправок, но существенную реформу календаря провел Юлий Цезарь, изучивший во время пребывания в Египте солнечный календарь. Годовой путь Солнца в Древнем Вавилоне делили на 12 частей по 30° с созвездиями (пояс Зодиака). В этом делении — влияние вавилонской системы счисления, от которой осталось деление окружности на 360°, градуса — на 60 мин, минуты — на 60 с. Во II в. до н. э. александрийский астроном Гиппарх ввел понятие о начале весны, лета, осени и зимы как о моментах вступления Солнца в соответствующий знак Зодиака Овна, Рака, Весов и Козерога. Но из-за прецессии (медленной — по 50 угловых секунд в год) точка весеннего равноденствия вскоре перешла в созвездие Рыб, а в течение ближайших 150 лет переместится в зону следующего созвездия — Водолея. Кроме того, сейчас годовой путь Солнца по эклиптике проходит уже через 13 созвездий, но для сохранения традиции деления на 12 равных зон часто созвездие Змееносца объединяют с созвездием Скорпиона.
В Италии 3000 лет назад был распространен сельскохозяйственный календарь, в котором год длился 295 суток (период активной жизнедеятельности растительного мира на широтах Италии 300 дней) и начинался с весеннего месяца, в котором день становился равным ночи (сейчас это 21 марта). Год делили на 10 лунных месяцев, отличаемых по номерам. Несовершенство этого солнечно-лунного календаря накапливало ошибки, и в начале VII в. до н. э. была проведена реформа — добавили еще 2 месяца, т.е. продолжительность года стала не 295, а 354 суток. Кроме того, были введены названия некоторых месяцев. Так, первый месяц назвали мартом в честь Марса — бога войны, культ которого также был связан с земледелием, второй — апрелисом, что в переводе означает «согретый солнцем» и «раскрывать», «расцветать» (время раскрытия почек и цветения первых цветов). В календарях и традициях многих народов отражены особенности римского календаря, связанные с месяцами и толкованием их названий. В апреле в Японии красочно отмечают день цветения сакуры, древнерусское название этого месяца — цветень. Месяц майнус (май) был назван в честь богини гор и плодородия Майи, в Древней Руси он — травень. Четвертый месяц — юниус (июнь) — получил свое название в честь древне-
64

римской богини плодородия Юноны, жены Юпитера. Как и в римском календаре, он связан с богом света — Юпитером, в древнерусском календаре — это светозар, т.е. озаренный светом. Многие названия месяцев древнеримского календаря (сентябрь — декабрь) вошли в европейские календари. Существует во всех странах деление года не только на месяцы и сутки, но и на недели.
Внутренняя структура календаря связана с соотношением месяцев и дней недели с числами месяцев. Семидневная неделя — период, примерно соответствующий 1/4 лунного месяца, или длительности между четырьмя фазами Луны. Лунный месяц (синодический) в среднем равен 29,53 средних суток. Древним людям были известны 7 планет, к которым относили Солнце, Луну, Меркурий, Венеру, Марс, Юпитер, Сатурн, и каждой из них посвящали один день недели. Это связано с традициями шумерской астрологии и отражено в культе числа «семь». Поэтому система условных астрономических знаков, изображающих небесные светила и дни недели, одинакова. Недельный подсчет времени зародился в странах Восточной Азии — Китае, Японии, Вьетнаме. В этих странах после дней Солнца и Луны (воскресенья и понедельника) в соответствии с древнекитайской натурфилософией, по которой все сущее связывалось с пятью стихиями или элементами природы (огнем, водой, деревом, металлом, землей), следуют дни этих стихий. Известны также недели, состоящие из 5 (пятидневки) и 10 (декады) суток.
Относительно совершенная система счета времени уже была в Египте 5 тысяч лет назад: год имел 12 месяцев по 30 дней каждый и дополнительных 5 дней, т. е. 365 дней. Такой счет времени как-то устранял недостатки солнечно-лунного римского календаря. Но продолжительность года — промежуток времени между двумя последовательными прохождениями центра Солнца через точку весеннего равноденствия — равна 365 сут 5 ч 46 с, и начало года смещалось ко все более ранней дате. Юлий Цезарь пригласил в Рим александрийского астронома и математика Созигена, и с его помощью ввел правило високосов, добавляющее 1 сутки за 4 года. Введенный Цезарем в 46 г. до н. э. юлианский календарь (старый стиль) получил распространение в странах Европы. В нем начало года было определено с 1 января, а год насчитывал 365,25 суток, что несколько превысило их продолжительность. В результате разница (11 мин 23,9 с) накапливалась и составляла ошибку в 1 сутки за 128 лет. Никейский церковный собор 325 г. принял юлианский календарь и установил единые для всей империи христианские праздничные дни. Задача реформы календаря состояла в исправлении накопившейся ошибки в равноденствиях, но менять правила Никейского собора долго не решались. В 1514 г. календарная коллегия запрашивала мнение польского астронома Н.Коперника, но он ответил, что пока длина года известна недоста-
65

точно точно. Но в 1581 г. ватиканский астроном Игнатий Данти убедил Римского папу Григория XIII воспользоваться проектом итальянского врача, астронома и математика Алоизия Лилио. Так был введен григорианский календарь (новый стиль) с 15 октября 1582 г., т.е. после 4 октября наступило 15-е, а не 5-е. Уточнение юлианского календаря касалось только улучшения его внешней структуры — приближения к значению 365,2422 сут — вводилось 97 високосных лет в каждые 400 лет, т. е. число високосов было уменьшено на 3. Годы столетий, число сотен которых не делится на 4, считаются простыми (1700, 1800, 1900), а годы, у которых число сотен делится на 4, — високосными (1600, 2000 и т.д.). Ошибка в 1 сут в этом календаре накапливается лишь за 3323 года. Подобную систему счета времен (с правилом високосов) предлагал еще в XI в. иранский ученый и поэт Омар Хайям. Григорианский календарь в течение XVI в. постепенно принимался сначала в странах католических, в XVIII в. — в странах протестантских; в 1873 г. — в Японии, в 1911 — в Китае, в 1918 — в Советской России, в 1924 — в Греции и Югославии, в 1925 — в Иране, в 1926 — в Турции, в 1928 — в Египте. В зависимости от времени введения приходилось добавлять к дате 10, 11, 12 или 13 суток.
Но проблема улучшения календаря все-таки остается. Она связана с несоизмеримостью трех основных промежутков времени, заимствованных у природы: средних солнечных суток, лунного месяца и солнечного (тропического) года. Недостатки современного григорианского календаря заключаются именно в несовершенстве его внутренней структуры: дни недели не согласованы с числами месяцев в разных годах и даже в одном; полугодия, кварталы и месяцы содержат разное число суток, и начала разных месяцев приходятся на разные дни недели. Отсюда неудобства планирования и учета.
Эрой (от лат. аеrа — исходное число) называется начальная дата системы летосчисления и последующая система. У многих народов эры связывали с временем царствования какой-либо династии: династии фараонов (3100 — 3066 гг. до н. э. в Египте), династии императоров (в Китае или Японии). Эра греческих олимпиад была рассчитана с 1 января 776 г. до н.э., причем было принято два цикла: по 235 (19 лет) и по 940 (около 76 лет) лунных месяцев. В Италии эра основания города Рима начинается с 22.04.753 г. до н. э. Народы Востока, исповедующие ислам, начинают отсчет от хиджры (в пер. — переселение), момента переселения мифического Мухаммеда (Магомета) из Мекки в Медину, которое произошло 16 июня 622 г. н.э., в пятницу, если считать по первому вечернему восходу серпа молодой Луны после новолуния. Современное летосчисление в Европе и Америке ведется от мифической даты «рождества Христова», которое произошло в 753 г. после основания Рима (как считал христианский монах Ексигуус в 525 г.).
66

В большинстве стран она известна под названием А.Д. (Anno Domini), что значит «год господа». В допетровской России годы считались от сотворения мира (как в Византии — с началом 01.09.5508 г. до н. э.), а в 1700 г. перешли на начало года с 1 января и на счет от рождества Христова (Р.Х., или новая эра). Проблема реформы календаря обсуждается уже столетие, предлагаются разные варианты, но сделать выбор весьма сложно, так как необходимо согласие народов разных культур.
Так, 2000 г. — это 2754 г. от основания Рима, мусульманский 1378 г. хиджры, иудейский — 5760 г., буддистский — 2544 г., китайский — 4697 г. Новый год во многих календарях приходится на разные даты. В лунно-солнечно-юпитерном календаре Вьетнама, Китая и Японии он наступает от 13 января до 24 февраля, в Израиле — между 6 сентября и 5 октября, в Иране — в день весеннего равноденствия (20 — 22 марта). В лунных календарях мусульманских стран новогодняя дата может приходиться на любой день года. К примеру, в Афганистане и Иране 21.03.1980 отмечалось наступление 1359 г. В Японии фиксация дат такова: порядковый номер дня и номер лунного месяца, затем порядковый номер эры (года правления императора) и порядковый номер года девиза. Есть правила и таблицы перевода дат на григорианский календарь, уже принятый во многих странах.
Возраст Вселенной оценивается в 13 — 15 млрд лет (после начала расширения, согласно принятой модели Большого Взрыва). Как можно измерить такие огромные времена, не сопоставимые с жизнью не только человечества, но и всего живого на Земле?
Метод радиоактивного распада основан на независимости периода полураспада радиоактивных элементов от внешних условий. Известно, что все живое получает двуокись углерода из воздуха. Некоторая часть углерода радиоактивна, и любой образец вещества, изготовленный из живого, содержит эту же долю радиоактивного углерода. Измеряя скорость отсчетов для какого-то образца, можно вычислить, сколько лет прошло с того времени, когда данный кусок доски был живым деревом. В детекторе «свежее» вещество даст 16 отсч./мин на каждый грамм углерода, а за 5600 лет оно даст только 8 отсч./мин на 1 г и т. д. Многие археологические находки «датированы» определенным количеством оставшегося в их веществе радиоактивного углерода. По его количеству можно определить возраст до 25 000 лет.
По периоду полураспада элементов можно заглянуть в прошлое: за это время половина вещества превращается в другой элемент, за следующий период полураспада — еще половина и т.д. (рис. 2.5). Так как нет радиоактивных элементов с периодом полураспада в 106—108 лет, то возраст Солнечной системы — около 108 лет. Из соотношения других изотопов 235U и 238U возраст Солнечной системы был уточнен и составил 5 109 лет. Оценка возраста Вселенной, связанная с моделями эволюции, позволяет заключить, что
67

Солнечная система была образована в результате взрыва звезды, по меньшей мере, второго поколения. Пыль после взрыва скучивалась в вихри, группировалась под действием гравитации. Нашему Солнцу подобный взрыв уже не грозит — согласно моделям развития звезд такого типа примерно через 5 млрд лет оно расширится, потом сожмется и превратится в остывающего карлика. Существующая ныне Вселенная образовалась примерно 15 млрд лет назад и с тех пор расширяется.
Приведем некоторые временные интервалы: сутки — 8,64 • 104 с; год — 3 • 107 с; средняя продолжительность жизни человека — 2 • 109 с; средний возраст египетских пирамид — 1 • 1012 с; существование жизни на Земле — 7,5 • 1016 с; время появления: первобытного человека — 5 • 1013 с; млекопитающих — 5 1015 с; земноводных — 7,5-1015 с; возраст Земли — 1,5-1017 с; возраст Вселенной — 5 • 1017 с.
Обратимся к временным интервалам, меньшим 1 с. Период колебаний звуковой волны достигает 0,001 с, радиоволны — 10-6 с. Меньшие промежутки времени связаны с расстояниями в микромире, и их можно измерять через скорость света. За 10-9 с свет проходит расстояние 30 см, соответственно, можно рассчитать, что расстояние, равное размеру атома, свет проходит за 10-18 с, атомного ядра — за 10-24 с. Колебания молекул совершаются за 10-12 с, атома — 10-15 с, ядра — 10-21 с.

2.5. Структурные уровни организации материи

Современное научное знание основано на структурности материи и системном подходе. Система — это определенная целостность, проявляющая себя как нечто единое по отношению к другим объектам или условиям. В понятие системы входит совокупность элементов и связей между ними. Под элементом системы понимается компонент системы, который далее, внутри данной
68

системы, рассматривается как неделимый, под структурной организацией материи — ее иерархическое строение — любой объект от микрочастиц до организмов, планет и галактик является частью более сложного образования и сам может считаться таковым, т. е. состоящим из неких составных частей. Доступная для наблюдения часть мира простирается в пространстве от 10-17 до 1026 м, а во времени — до 2 • 1010 лет.
Молекула — наименьшая частица вещества, сохраняющая его химические свойства. Молекулы состоят из атомов, соединенных химическими связями. Молекула инертных газов — это просто атомы, а у других газов она состоит из двух или более атомов. Молекулы, состоящие из многих повторяющихся групп атомов, называют макромолекулами. Но свойства веществ определяются не только составом молекул, но и их структурой. В молекуле выделили структурные блоки, каждый из которых обладает своей уникальной реакционной способностью. Теория химического строения молекул была создана А.М.Бутлеровым, а позже подтверждена кван-тово-механическими расчетами. Под молекулярной структурой понимается сочетание атомов, которые имеют закономерное расположение в пространстве и связаны между собой химической связью с помощью валентных электронов.
Атом составная часть молекулы. Существование структуры атома было доказано открытием в 1897 г. Дж.Дж.Томсоном электрона, называемого атомом электричества. Заряд электрона Томсон определил уже в 1898 г., а через 5 лет предложил модель строения атома. В 1903 г. Э. Резерфорд нашел посредством опытов с отклонением а-лучей, что отношение заряда к массе по знаку и величине соответствует дважды ионизированным атомам гелия. Опыты показали, что в атомах существуют положительно заряженные частицы — ядра, в которых сосредоточена почти вся масса атома и которые имеют размеры 10-14 м, тогда как размеры самого атома порядка 10-10 м. Была предложена «планетарная» модель атома. Исследования многих ученых позволили сделать вывод, что место элемента в Периодической системе, его атомный номер определяются числом элементарных зарядов ядра атома. Периодичность же свойств элементов объяснила только квантовая механика.
Вслед за электроном были открыты элементарные частицы: протон, нейтрон и другие (сейчас их известно более трехсот) и соответствующие им античастицы. Для упорядочения их группируют по времени жизни, участию в разных типах фундаментальных взаимодействий и другим признакам.
Кварковая модель строения элементарных частиц существует с 1964 г. (Г.Цвейг, М.Гелл-Ман). Сначала кварки рассматривались как гипотетические структурные элементы с дробным электрическим зарядом, но они заняли в квантовой хромодинамике роль
69

основных частиц. Открытие возможности превращений одних элементарных частиц в другие показывает, что они тоже имеют сложную внутреннюю структуру. Ее описывают с помощью так называемых «виртуальных» частиц, так как эту внутреннюю структуру невозможно описать через другие частицы.
Микромир — мир очень малых микрообъектов, размеры которых от 10-10 до 10-18 м, а время жизни может быть до 10-24 с. Испускание и поглощение света происходит порциями, квантами, получившими название фотонов. Это мир — от атомов до элементарных частиц. При этом для микромира свойственен корпускулярно-волновой дуализм, т.е. любой микрообъект обладает как волновыми, так и корпускулярными свойствами. Описание микромира опирается на принцип дополнительности Н. Бора и соотношения неопределенности Гейзенберга. Мир элементарных частиц, которые долго считали элементарными «кирпичиками», подчиняется законам квантовой механики, квантовой электродинамики, квантовой хромоди-намики. Квантовое поле носит дискретный характер.
Макромир — это мир объектов, соизмеримых с человеческим опытом. Размеры макрообъектов измеряются от долей миллиметра до сотен километров, а времена — от секунд до лет. Поведение же макроскопических тел, состоящих из микрочастиц, описывается классической механикой и электродинамикой. Материя может пребывать как в виде вещества, так и в виде поля, причем вещество дискретно, а поле — непрерывно. Скорости распространения поля равны скорости света, максимальной из возможных скоростей, а скорости движения частиц вещества всегда меньше скорости света.
Мегамир — мир объектов космического масштаба: планеты, звезды, галактики, Метагалактика. Кроме них во Вселенной присутствуют материя в виде излучения и диффузная материя. Последняя может занимать огромные пространства в виде гигантских облаков газа и пыли — газо-пылевых туманностей. В звездах сосредоточено 97 % вещества нашей Галактики — Млечный Путь. В других галактиках распределение материи примерно такое же. В Галактике почти все звезды являются двойными, а всего их более 120 млрд. Диаметр Галактики порядка 100 тыс. св. лет; наше Солнце — рядовая звезда типа «желтый карлик», находится на краю утолщенного диска, в 5 пк от края. Но имеются звездные системы, состоящие из 3 — 5 звезд, часто окруженные диффузной материей. Звездные скопления могут состоять из нескольких сотен отдельных звезд, а шаровые скопления — из сотен тысяч. Галактики (их до 10 млрд), наблюдаемые с Земли как туманные пятнышки, имеют разную форму: спиральную, неправильную, эллиптическую. Они образуют скопления из нескольких тысяч отдельных систем. Систему галактик называют Метагалактикой. Мегамир описывается законами классической механики с поправками, которые были внесены теорией относительности.
70

2.6. Понятие «поле». Уравнения Максвелла. Свет — электромагнитная волна

Поле — одна из форм существования материи и, пожалуй, самая важная. Понятие «поле» отражает тот факт, что электрические и магнитные силы действуют с конечной скоростью на расстоянии, взаимно и непрерывно порождая друг друга. Поле излучается, распространяется с конечной скоростью в пространстве, взаимодействует с веществом. Фарадей сформулировал идеи поля как новой формы материи, а записи вложил в запечатанный конверт, завещав вскрыть его после своей смерти (этот конверт был обнаружен только в 1938 г.). Фарадей использовал (1840) идею всеобщего сохранения и превращения энергии, хотя сам закон еще не был открыт.
В лекциях (1845) Фарадей говорил не только об эквивалентных превращениях энергии из одной формы в другую, но и о том, что он давно пытался «открыть прямую связь между светом и электричеством» и что «удалось намагнитить и наэлектризовать луч света и осветить магнитную силовую линию». Ему принадлежит методика изучения пространства вокруг заряженного тела с помощью пробных тел, введение для изображения поля силовых линий. Он описал свои опыты по вращению плоскости поляризации света магнитным полем. Изучение взаимосвязи электрических и магнитных свойств веществ привело Фарадея не только к открытию пара- и диамагнетизма, но и к установлению фундаментальной идеи — идеи поля. Он писал (1852): «Среда или пространство, его окружающие, играют столь же существенную роль, как и сам магнит, будучи частью настоящей и полной магнитной системы».
Фарадей показал, что электродвижущая сила индукции Е возникает при изменении магнитного потока Ф (размыкании, замыкании, изменении тока в проводниках, приближении или удалении магнита и пр.). Максвелл выразил этот факт равенством: Е = -дФt. По Фарадею, способность индуцировать токи проявляется по окружности вокруг магнитной равнодействующей. Максвелл записывает это в векторной форме (рис. 2.6, a): rot E = = -дBt, т. е. переменное магнитное поле окружено вихревым электрическим полем, а знак минус связан с правилом Ленца: возникает индукционный ток такого направления, чтобы препятствовать изменению, порождающему его. Обозначение rot — от англ. rotorвихрь. В 1846 г. Ф. Нейман нашел, что на создание индукционного тока надо затратить определенное количество энергии.
Максвелл математически обработал идеи Фарадея, связав в своих уравнениях все экспериментальные законы, полученные в области электрических и магнитных явлений. Закон Ампера имеет дело с магнитным полем вдоль замкнутого контура с током (рис. 2.6, б). Аналог закона Кулона в электростатике — закон Био— Савара выглядел в векторной форме так: rot H = j. Суммируя токи
71

и поля для показа того, что магнитное поле создается не только током проводимости j, но и током смещения, Максвелл вводит дополнительный член дDt, где D — вектор электрической индукции. Так, по аналогии с фарадеевой поляризацией диэлектрика он ввел в свои уравнения поляризацию пространства, или вакуума. Введение поляризации вакуума вызвало неоднозначную реакцию со стороны ученых, до сих пор обсуждение этого вопроса не сходит со страниц научных журналов, вызывая дискуссии. Но Максвелла это не очень волновало, так как он представлял вакуум диэлектрической средой, а не сплошной пустотой.
Он писал: «Мы не в состоянии понимать распространение во времени иначе, как только двумя способами — или как полет материальной субстанции через пространство, или как распространение состояния движения или напряжения в среде, уже существующей в пространстве... Все теории приводят к концепции среды, в которой имеет место распространение. И если мы примем эту среду в качестве гипотезы, то я считаю, что она должна занимать выдающееся место в наших исследованиях и что нам следует попытаться сконструировать рациональное представление о всех деталях ее действия». В конце жизни Максвелл написал для
72

Британской энциклопедии статью «Эфир», где были такие строки: «Несомненно, что межпланетное и межзвездное пространства не суть пространства пустые, но заняты материальной субстанцией или телом, самым обширным и, надо думать, самым однородным, какое только нам известно» (1879).
Кроме уже сформулированных двух уравнений, отражающих закон индукции и закон Био—Савара, Максвелл записал в векторной форме законы о замкнутости магнитных силовых линий div B = 0 и о структуре электрического поля div D = р (р — плотность электрического заряда), а также группу уравнений для векторов электромагнитного поля, связанных с характеристиками среды: и тока проводимости где
 — сторонняя электродвижущая сила; - электрическая и
магнитная проницаемости среды.
В целом система уравнений, записанная Максвеллом в векторной форме, имеет компактный вид:

Входящие в эти уравнения векторы электрической и магнитной индукции (D и В) и векторы напряженности электрического и магнитного полей (Е и Н) связаны указанными простыми соотношениями с диэлектрической постоянной е и магнитной проницаемостью среды μ. Использование этой операции означает, что вектор напряженности магнитного поля вращается вокруг вектора тока плотности j.
Согласно уравнению (1), любой ток вызывает возникновение магнитного поля в окружающем пространстве, постоянный ток — постоянное магнитное поле. Такое поле не может вызвать в «следующих» областях электрическое поле, так как, по уравнению (2), только изменяющееся магнитное поле порождает ток. Вокруг переменного тока создается и переменное магнитное поле, способное создать в «следующем» элементе пространства электрическое поле волны, волны незатухающей, — энергия магнитного поля в пустоте полностью переходит в энергию электрического, и наоборот. Поскольку свет распространяется в виде поперечных волн, можно сделать два вывода: свет — электромагнитное возмущение; электромагнитное поле распространяется в пространстве в виде поперечных волн со скоростью с = 3 • 108 м/с, зависящей от свойств среды, и поэтому невозможно «мгновенное дальнодействие». Это предчувствовал Ломоносов, доказали Фарадей и Максвелл. Итак, в световых волнах колебания совершают напряженности электри-
73

ческого и магнитного полей, а носителем волны служит само пространство, которое находится в состоянии напряжения. А оно за счет тока смещения создаст новое магнитное поле и так до бесконечности (рис. 2.6, в).
Смысл уравнений (3) и (4) понятен — (3) описывает электростатическую теорему Гаусса и обобщает закон Кулона, (4) отражает факт отсутствия магнитных зарядов. Дивергенция (от лат. divergereобнаруживать расхождение) есть мера источника. Если в стекле, например, не рождаются световые лучи, а только проходят сквозь него, divD = 0. Солнце как источник света и теплоты обладает положительной дивергенцией, а темнота — отрицательной. Поэтому силовые линии электрического поля кончаются на зарядах, плотность которых р, а магнитного — замкнуты сами на себя и нигде не кончаются.
Система взглядов, которая легла в основу уравнений Максвелла, получила название максвелловской теории электромагнитного поля. Хотя эти уравнения имеют простой вид, но чем больше Максвелл и его последователи работали над ними, тем более глубокий смысл открывался им. Г. Герц, опыты которого явились первым прямым доказательством верности теории электромагнитного поля Фарадея—Максвелла, писал о неисчерпаемости уравнений Максвелла: «Нельзя изучать эту удивительную теорию, не испытывая по временам такого чувства, будто математические формулы живут собственной жизнью, обладают собственным разумом — кажется, что эти формулы умнее нас, умнее даже самого автора, как будто они дают нам больше, чем в свое время было в них заложено».
Процесс распространения поля будет продолжаться до бесконечности в виде незатухающей волны — энергия магнитного поля в пустоте полностью переходит в энергию электрического, и наоборот. Среди постоянных, входящих в уравнения, была константа с; Максвелл нашел, что ее значение равнялось точно значению скорости света. На это совпадение нельзя было не обратить внимания. Итак, в световых волнах колебания совершают напряженности электрического и магнитного полей, а носителем волны служит само пространство, которое находится в состоянии напряжения.
Световая волна — это волна электромагнитная, «бегущая в пространстве и отделенная от испустивших ее зарядов», как выразился Вайскопф. Открытие Максвелла он сравнил по важности с открытием закона тяготения Ньютона. Ньютон связал движение планет с тяготением на Земле и открыл фундаментальные законы, управляющие механическим движением масс под действием сил. Максвелл связал оптику с электричеством и вывел фундаментальные законы (уравнения Максвелла), управляющие поведением электрических и магнитных полей и их взаимодействием с зарядами и магнитами. Труды Ньютона привели к введению
74

понятия всеобщего закона тяготения, труды Максвелла — понятия электромагнитного поля и к установлению законов его распространения.
Если электромагнитное поле может существовать независимо от материального носителя, то дальнодействие должно уступить место близкодействию, полям, распространяющимся в пространстве с конечной скоростью. Идеи тока смещения (1861), электромагнитных волн и электромагнитной природы света (1865) были настолько смелыми и необычными, что даже следующее поколение физиков не сразу приняло теорию Максвелла. В 1888 г. Г. Герц открыл электромагнитные волны, но такого активного противника теории Максвелла, как У. Томсон (Кельвин), смогли убедить лишь эксперименты П.Н.Лебедева, открывшего в 1889 г. существование светового давления.
Плотность потока энергии в волне, распределенной в некоторой области пространства и колеблющейся во времени, — это количество электромагнитной энергии, проходящей через единичную площадку, перпендикулярную направлению распространения, в единицу времени. Плотность потока энергии обозначают буквой SIT. Для плоской волны с Е = В энергия делится поровну между электрической и магнитной компонентами, поэтому удобно записать: SП= Е2 = В2.
Электромагнитное излучение Солнца переносит на Землю его энергию, снабжая нас теплотой и светом. Учение о движении энергии было разработано русским физиком Н.А.Умовым. Он показал, что изменение энергии внутри объема определяется ее потоком, проходящим через поверхность. Через 11 лет после публикации Умова английский физик лорд Дж. Рэлей представил Королевскому обществу сообщение Дж. Пойтинга «О переносе энергии в электромагнитном поле», где содержались независимо полученные аналогичные результаты. Поэтому в настоящее время вектор SП = [Е, Н] называют вектором Умова—Пойтинга.
Импульс электромагнитной волны можно записать аналогично: из формулы Е = тс2 следует получить значение эквивалентной массы и, зная скорость распространения волны с, посчитать импульс, т. е. Р = тс = Е/с. Так как скорость света огромна, мы не замечаем давления света, обусловленного наличием импульса ни от световой волны, ни от светящейся лампочки, ни от Солнца. В теории Максвелла энергия распределена в пространстве с объемной плотностью, записанной выше, и электромагнитная волна несет энергию. Ученый утверждал, что, падая на поглощающую поверхность, волна должна производить давление, пропорциональное объемной плотности энергии.
В середине XIX в. Максвелл объединил электричество и магнетизм в единой теории поля. Электрический заряд связан с элементарными частицами, из которых самые известные — электрон 75

и протон — имеют одинаковый по величине заряд е, это универсальная постоянная природы. В СИ = 1,6 • 10-19 Кл. Хотя магнитных зарядов пока не обнаружено, в теории они уже возникают. По мнению физика Дирака, величина магнитных зарядов должна быть кратной заряду электрона
Дальнейшие исследования в области электромагнитного поля привели к противоречиям с представлениями классической механики, которые пытался устранить путем математического согласования теорий голландский физик X. А. Лоренц. Он ввел преобразования координат инерциальных систем, которые в отличие от классических преобразований Галилея содержали константу — скорость света, которая и осуществляла связь с теорией поля. Изменились масштабы времени и длин при скоростях, близких к скорости света. Физический смысл этих преобразований Лоренца был объяснен только А. Эйнштейном в 1905 г. в его работе «К электродинамике движущихся тел», составившей основу специальной теории относительности (СТО), или релятивистской механики.

2.7. Типы фундаментальных взаимодействий в физике

Естествознание не только выделяет типы материальных объектов во Вселенной, но и раскрывает связи между ними. Связь между объектами в целостной системе более упорядочена, более устойчива, чем связь каждого из элементов с элементами из внешней среды. Чтобы разрушить систему, выделить из системы тот или иной элемент, нужно приложить к ней определенную энергию. Эта энергия имеет разную величину и зависит от типа взаимодействия между элементами системы. В мегамире эти взаимодействия обеспечиваются гравитацией, в макромире к гравитации добавляется электромагнитное взаимодействие, и оно становится основным, как более сильное. В микромире на размерах атома проявляется еще более сильное ядерное взаимодействие, обеспечивающее целостность атомных ядер. При переходе к элементарным частицам энергия внутренних связей становится сравнимой с собственной энергией частиц — слабое ядерное взаимодействие обеспечивает их целостность. Так что чем меньше размеры материальных систем, тем более прочно связаны между собой элементы.
История науки знает множество попыток представить сложные процессы во Вселенной в виде определенных схем. Успешное познание окружающего мира и приведение наблюдаемых явлений к простейшим понятиям возможны лишь в том случае, если бы мы сумели описать мир в терминах ограниченного числа фундаментальных частиц и нескольких типов фундаментальных взаимодействий, в которые они могут вступать. Сейчас мы знаем, что природные вещества — это химические соединения элементов, построенных из атомов и собранных в Периодическую
76

таблицу. Некоторое время считали, что атомы и есть элементарные кирпичики мироздания, но потом установили, что атом представляет собой «целую Вселенную» и состоит из взаимодействующих друг с другом еще более фундаментальных частиц: протонов, электронов, нейтронов, мезонов и т.д. Число частиц, претендующих на элементарность, увеличивается, но так ли уж они элементарны?
Механика Ньютона была признана, но происхождение сил, которые вызывают ускорения, в ней не обсуждались. Силы гравитации действуют через пустоту, они дальнодействующие, тогда как силы электромагнитные — через среду. В настоящее время все взаимодействия в природе сводят к четырем типам: гравитационные, электромагнитные, сильные ядерные и слабые ядерные.
Гравитация (от лат. gravitas— тяжесть) — исторически первое исследованное взаимодействие. Вслед за Аристотелем считали, что все тела стремятся в «своему месту» (тяжелые — вниз, к Земле, легкие — вверх). Физике XVII—XVIII вв. были известны только гравитационные взаимодействия. По Ньютону, две точечные массы притягивают друг друга с силой, направленной вдоль соединяющей их прямой: Знак минус указывает на то, что мы имеем дело с притяжением, rрасстояние между телами (считается, что размер тел намного меньше r), т1 и т2 — массы тел. Величина G— универсальная постоянная, определяющая значение гравитационных сил. Если тела массой по 1 кг находятся на расстоянии 1 м друг от друга, то сила притяжения между ними равна 6,67 • 10-11 н. Гравитация универсальна, все тела подвержены ей и даже сама частица — источник гравитации. Если бы величина Gбыла больше, то увеличилась бы и сила, но Gочень мала, и гравитационное взаимодействие в мире субатомных частиц несущественно, а между макроскопическими телами еле заметно. Кэвендиш сумел измерить величину G, пользуясь крутильными весами. Универсальность постоянной Gозначает, что в любом месте Вселенной и в любой момент времени сила притяжения между телами массой по 1 кг, разделенными расстоянием 1 м, будет иметь то же значение. Поэтому можно говорить, что величина Gопределяет структуру гравитирующих систем. Гравитация, или тяготение, не очень существенна при взаимодействии между малыми частицами, но она удерживает планеты, всю Солнечную систему и галактики. Мы постоянно ощущаем гравитацию в нашей жизни. Закон утвердил дальнодействующую природу силы тяготения и основное свойство гравитационного взаимодействия — его универсальность.
Теория тяготения Эйнштейна (ОТО) дает отличающиеся результаты от закона Ньютона в сильных гравитационных полях, в слабых — обе теории совпадают. Согласно ОТО, гравитация это проявление искривления пространства-времени. Тела движутся по искривленным траекториям не потому, что на них действует
77

гравитация, а потому, что они движутся в искривленном пространстве-времени. Движутся «кратчайшим путем, и тяготение — это геометрия». Влияние искривления пространства-времени можно обнаружить не только вблизи коллапсирующих объектов типа нейтронных звезд или черных дыр. Таковы, например, прецессия орбиты Меркурия или замедление времени на поверхности Земли (см. рис. 2.3, в). Эйнштейн показал, что гравитацию можно описывать как эквивалент ускоренного движения.
Чтобы избежать сжатия Вселенной под влиянием самогравитации и обеспечить ее стационарность, он ввел возможный источник гравитации с необычными свойствами, ведущий к «расталкиванию» материи, а не к концентрации ее, а сила отталкивания  возрастает с увеличением расстояния. Но эти свойства могут проявляться только в очень больших масштабах Вселенной. Сила отталкивания неимоверно мала и не зависит от отталкивающей массы; ее представляют в виде где т — масса от-
талкиваемого объекта; rего расстояние от отталкивающего тела; Lконстанта. В настоящее время устанавливают верхний предел для L= 10-53 м-2, т.е. для двух тел массой по 1 кг, находящихся на расстоянии 1 м, сила притяжения превышает космическое отталкивание, по крайней мере в 1025 раз. Если две галактики с массами 1041 кг находятся на расстоянии 10 млн св. лет (около 1022 м), то для них силы притяжения примерно уравновешивались бы силами отталкивания, если величина Lдействительно близка к указанному верхнему пределу. Эта величина не измерена до сих пор, хотя и важна для крупномасштабной структуры Вселенной как фундаментальная.
Электромагнитное взаимодействие, обусловленное электрическими и магнитными зарядами, переносится фотонами. Силы взаимодействия между зарядами сложным образом зависят от положения и движения зарядов. Если два заряда qq2неподвижны и сосредоточены в точках на расстоянии r, то взаимодействие между ними электрическое и определяется законом Кулона:  В зависимости от знаков зарядов q1и q2сила электрического взаимодействия, направленная вдоль прямой, соединяющей заряды, будет силой притяжения или отталкивания. Здесь через обозначена постоянная, определяющая интенсивность электростатического взаимодействия, ее значение равно 8,85 • 10-12 Ф/м. Так, два заряда по 1 Кл, разнесенные на 1 м, будут испытывать силу 8,99 109 Н. Электрический заряд всегда связан с элементарными частицами. Численная величина заряда наиболее известных среди них — протона и электрона — одинакова: это универсальная постоянная е = 1,6 10-19 Кл. Заряд протона считается положительным, электрона — отрицательным.
Магнитные силы порождаются электрическими токами — движением электрических зарядов. Существуют попытки объединить
78

теории с учетом симметрий, в которых предсказывается существование магнитных зарядов (магнитных монополей), но они пока не обнаружены. Поэтому величина е определяет и интенсивность магнитного взаимодействия. Если электрические заряды движутся с ускорением, то они излучают — отдают энергию в виде света, радиоволн или рентгеновских лучей в зависимости от диапазона частот. Почти все носители информации, воспринимаемые нашими органами чувств, имеют электромагнитную природу, хотя и проявляются подчас в сложных формах. Электромагнитные взаимодействия определяют структуру и поведение атомов, удерживают атомы от распада, отвечают за связи между молекулами, т. е. за химические и биологические явления.
Гравитация и электромагнетизм — дальнодействующие силы, распространяющиеся на всю Вселенную.
Сильные и слабые ядерные взаимодействия — короткодействующие и проявляются только в пределах размеров атомного ядра, т. е. в областях порядка 10-14 м.
Слабое ядерное взаимодействие ответственно за многие процессы, обуславливающие некоторые виды ядерных распадов элементарных частиц (например, (3-распад — превращение нейтронов в протоны) с радиусом действия почти точечным: около 10-18 м. Оно сильнее сказывается на превращениях частиц, чем на их движении, поэтому его эффективность определяют постоянной, связанной со скоростью распада, — универсальной постоянной связи g(W), определяющей скорость протекании процессов типа распада нейтрона. Слабое ядерное взаимодействие осуществляют так называемые слабые бозоны, и одни субатомные частицы могут превращаться в другие. Открытие нестабильных субъядерных частиц обнаружило, что слабое взаимодействие вызывает множество превращений. Сверхновые звезды — один из немногих случаев наблюдаемого слабого взаимодействия.
Сильное ядерное взаимодействие препятствует распаду атомных ядер, и не будь его, ядра распались бы из-за сил электрического отталкивания протонов. В ряде случаев для его характеристики вводят величину g(S), аналогичную электрическому заряду, но намного большую. Сильное взаимодействие, осуществляемое глюонами, резко спадает до нуля за пределами области радиусом около 10-15 м. Оно связывает между собой кварки, входящие в состав протонов, нейтронов и других подобных частиц, именуемых адронами. Говорят, что взаимодействие протонов и нейтронов есть отражение их внутренних взаимодействий, но пока картина этих глубинных явлений скрыта от нас. С ним связаны энергия, выделяемая Солнцем и звездами, превращения в ядерных реакторах и освобождение энергии.
Перечисленные типы взаимодействий имеют, видимо, разную природу. К настоящему времени не ясно, исчерпываются ли ими
79

все взаимодействия в природе. Самое сильное — короткодействующее сильное взаимодействие, электромагнитное слабее его на 2 порядка, слабое — на 14 порядков, а гравитационное меньше сильного на 39 порядков. В соответствии с величиной сил взаимодействия они происходят за разное время. Сильные ядерные взаимодействия возникают при столкновении частиц с околосветовыми скоростями. Время реакций, определяемое делением радиуса действия сил на скорость света, дает величину порядка 10-23 с. Процессы слабого взаимодействия происходят за 10-9 с, а гравитационные — порядка 1016 с, или 300 млн лет.
«Закон обратных квадратов», по которому действуют друг на друга точечные гравитационные массы или электрические заряды, следует, как показал П.Эренфест, из трехмерности пространства (1917). В пространстве п измерений точечные частицы взаимодействовали бы по закону обратной степени (n - 1). Для п = 3 справедлив закон обратных квадратов, так как 3 - 1 = 2. А при и = 4, что соответствует закону обратных кубов, планеты двигались бы по спиралям и быстро упали на Солнце. В атомах при числе измерений больше трех также не существовало бы устойчивых орбит, т. е. не было бы химических процессов и жизни. На связь трехмерности пространства с законом тяготения указывал еще и Кант.
Кроме того, можно показать, что распространение волн в чистом виде невозможно в пространстве с четным числом измерений — появляются искажения, нарушающие переносимую волной структуру (информацию). Пример тому — распространение волны по резиновому покрытию (по поверхности размерности п = 2). В 1955 г. математик Г. Дж. Уитроу заключил, что поскольку живым организмам необходимы передача и обработка информации, то высшие формы жизни не могут существовать в пространствах четной размерности. Этот вывод относится к известным нам формам жизни и законам природы и не исключает существования иных миров, иной природы.

2.8. Попытки построения Теории Всего Сущего

От Ньютона и П.Лапласа сохранилось рассмотрение механики как универсальной физической теории. В XIX в. это место заняла механистическая картина мира, включающая механику, термодинамику и кинетическую теорию материи, упругую теорию света и электромагнетизм. Открытие электрона стимулировало пересмотр представлений. В конце века Х.Лоренц построил свою электронную теорию для охвата всех явлений природы, но этого не достиг. Проблемы, связанные с дискретностью заряда и непрерывностью поля, и проблемы в теории излучения («ультрафиолетовая катастрофа») привели к созданию квантово-полевой картины мира и квантовой механики. После создания СТО ожидалось, что всеобщий охват мира природы способна дать элект-
80

ромагнитная картина мира, соединявшая теорию относительности, теорию Максвелла и механику, но и эта иллюзия вскоре была развеяна.
Многие теоретики пытались едиными уравнениями охватить гравитацию и электромагнетизм. Под влиянием Эйнштейна, который ввел четырехмерное пространство-время, строились многомерные теории поля в попытках свести явления к геометрическим свойствам пространства.
Объединение осуществилось на основе установленной независимости скорости света для разных наблюдателей, движущихся в пустом пространстве при отсутствии внешних сил. Эйнштейн изобразил мировую линию объекта на плоскости, где пространственная ось направлена горизонтально, а временная — вертикально. Тогда вертикальная прямая — это мировая линия объекта, который покоится в данной системе отсчета, а наклонная — объекта, движущегося с постоянной скоростью. Кривая мировая линия соответствует движению объекта с ускорением. Любая точка на этой плоскости отвечает положению в данном месте в данное время и называется событием. Гравитация при этом уже не сила, действующая на пассивном фоне пространства и времени, а представляет собой искажение самого пространства-времени. Ведь гравитационное поле — это «кривизна» пространства-времени.
Для установления связи между системами отсчета, движущимися относительно друг друга, нужно измерять пространственные интервалы в тех же единицах, что и временные. Множителем для такого пересчета может служить скорость света, связывающая расстояние с временем, за которое свет может это расстояние преодолеть. В такой системе 1 м равен 3,33 не (1 не = 10-9 с). Тогда мировая линия фотона пройдет под углом 45°, а любого материального объекта — под меньшим углом (так как скорость у него всегда меньше скорости света). Поскольку пространственная ось соответствует трем декартовым осям, то мировые линии материальных тел будут находиться внутри конуса, описываемого мировой линией фотона. Результаты наблюдений солнечного затмения 1919 г. принесли всемирную славу Эйнштейну. Смещения звезд, которые можно увидеть в окрестности Солнца только во время затмения, совпали с предсказаниями теории тяготения Эйнштейна. Так что его геометрический подход к построению теории тяготения был подтвержден впечатляющими экспериментами.
В том же 1919 г., когда появилась ОТО, приват-доцент Кениг-сбергского университета Т. Калуца отправил Эйнштейну свою работу, где предлагал пятое измерение. Пытаясь найти первооснову всех взаимодействий (тогда было известно два — тяготение и электромагнетизм), Калуца показал, что они могут быть выведены единообразно в пятимерной ОТО. Для успеха объединения не имели значения размеры пятого измерения и, может быть, они столь малы, что их не удается обнаружить. Только после двух-
81

годичной переписки с Эйнштейном статью опубликовали. Шведский физик О. Клейн предложил модификацию основного уравнения квантовой механики с пятью переменными вместо четырех (1926). Неощущаемые нами измерения пространства он «свернул» до очень малых размеров (приведя пример небрежно брошенного поливального шланга, который издалека кажется извилистой линией, а вблизи каждая его точка оказывается окружностью). Размеры этих своеобразных петелек 1020 раз меньше размера атомного ядра. Поэтому пятое измерение и не наблюдаемо, но возможно.
В развитие пятимерной теории внесли свой вклад советские ученые Г.А.Мандель и В. А. Фок. Они показали, что траектория заряженной частицы в пятимерном пространстве может быть строго описана как геодезическая линия (от греч. geodaisia— землеразде-ление), или кратчайший путь между двумя точками на поверхности, т. е. пятое измерение может быть физически реальным. Оно не обнаружено из-за соотношения неопределенности Гейзенберга, которое каждую частицу представляет в виде волнового пакета, занимающего в пространстве область, размер которой зависит от энергии частицы (чем больше энергия, тем меньше объем области). Если пятое измерение свернуто в малую окружность, то, чтобы ее обнаружить, освещающие ее частицы должны обладать большой энергией. Ускорители дают пучки частиц, обеспечивающие разрешающую способность 10-18 м. Поэтому, если окружность в пятом измерении имеет меньшие размеры, ее пока нельзя обнаружить.
Как представить себе пятимерное пространство? Вообразим линию бесконечной длины, с каждой точкой которой связана окружность, нечто вроде бесконечного цилиндра. Одномерная линия и одномерная окружность порождают двухмерный цилиндр. Четырехмерную конструкцию можно представить из двумерной плоскости и двумерной сферы. Далее, пятимерное пространство порождено окружностью и обычным четырехмерным пространством, т. е. объединением сферы и пространства-времени. Длина окружности в пятом измерении, приводящая к образованию частиц в теории Калуцы, очень мала: около 10-32 м! Но работы по многомерным теориям продолжались. Так, советский профессор Ю. Б. Румер (свою научную деятельность он начал еще у М. Борна во время создания квантовой механики, общался со всеми великими физиками XX в., в том числе с Эйнштейном, последние 30 лет работал в Новосибирске) в своей пятимерной теории показал, что пятому измерению можно придать смысл действия. Тут же появились попытки представить наглядно это пятимерное пространство, как ранее четырехмерное пространство-время, введенное Эйнштейном. Одна из таких попыток — гипотеза о существовании «параллельных» миров. Четырехмерное изображение мяча представить было несложно: это совокупность его изображений в каждой временной точке — «труба» из мячей, которая тянется из прошлого в будущее. А пятимерный мяч —
82

это уже поле, плоскость из абсолютно одинаковых миров. Во всех мирах, имеющих от трех до пяти измерений, даже одна причина, хотя бы случайная, может породить несколько следствий.
Шестимерная Вселенная, построенная выдающимся советским авиаконструктором Л.Р. Бартини, включает три пространственных измерения и три временных. У Бартини длина времени — длительность, ширина — количество вариантов, высота — скорость времени в каждом из возможных миров.
Теория квантовой гравитации должна была соединить ОТО и квантовую механику. Во Вселенной, подчиненной законам квантовой гравитации, кривизна пространства-времени и его структура должны флуктуировать, квантовый мир никогда не находится в покое. И понятия прошлого и будущего, последовательность событий в таком мире тоже должны быть иными. Эти изменения пока не обнаружены, так как квантовые эффекты проявляются в исключительно малых масштабах.
В 50-е гг. XX в. Р.Фейнман, Ю.Швингер и С.Томогава независимо друг от друга создали квантовую электродинамику, связав квантовую механику с релятивистскими представлениями и объяснив многие эффекты, полученные при исследовании атомов и их излучений. Затем была разработана теория слабых взаимодействий, и показано, что электромагнетизм можно объединить математически только со слабым взаимодействием. Один из ее авторов, пакистанский физик-теоретик А. Салам, писал: «Секрет достижения Эйнштейна состоит в том, что он осознал фундаментальное значение заряда в гравитационном взаимодействии. И пока мы не поймем природу зарядов в электромагнитных, слабых и сильных взаимодействиях так же глубоко, как это сделал Эйнштейн для тяготения, надежды на успех в окончательной унификации мало... Мы хотели бы не только продолжить попытки Эйнштейна, в которых ему не удалось преуспеть, но и включить в эту программу остальные заряды».
Возродился интерес к многомерным теориям, и вновь стали обращаться к работам Эйнштейна, Бергмана, Калуцы, Румера, Йордана. В работах советских физиков (Л.Д.Ландау, И.Я.Померанчук, Е.С.Фрадкин) показано, что при расстояниях 10-33 см в квантовой электродинамике появляются неустранимые противоречия (расходимости, аномалии, все заряды обращаются в нуль). Многие ученые работали над идеями создания единой теории. С. Вайнберг, А. Салам и Ш. Глэшоу показали, что электромагнетизм и слабое ядерное взаимодействие можно считать проявлением некоей «электрослабой» силы и что истинные носители сильного взаимодействия — кварки. Созданная теория — квантовая хромодинамика — построила протоны и нейтроны из кварков и сформировала так называемую стандартную модель элементарных частиц.
83

Еще Планк отметил фундаментальную роль величин, составленных из трех констант, определяющих основные теории, — СТО (скорости света с), квантовую механику (постоянной Планка h) и теорию тяготения Ньютона (гравитационной постоянной G). Из их комбинации можно получить три величины (планковские) с
размерностями массы, времени и длины

= 5 • 1093 г/см3. Планковская длина совпадает с критическим расстоянием, на котором теряет смысл квантовая электродинамика. Сейчас определена геометрия лишь на расстояниях более 10-16 см, которые больше планковских на 17 порядков величины! Объединение взаимодействий нужно для устранения в теории расхо-димостей и аномалий — проблему составляло определение частиц как точек и искажение ими пространства-времени. И его стали искать с помощью идей более высоких симметрий. Эти идеи получили «второе дыхание» в 80-е гг. XX в. в теориях великого объединения ТВО и супергравитации. ТВО — это теория, позволяющая объединить все взаимодействия, кроме гравитационного. Если удастся объединить с ней и гравитационное взаимодействие, то получится Теория Всего Сущего (ТВС). Тогда мир будет описываться единообразно. Поиск такой «суперсилы» продолжается.
Теории супергравитации используют многомерные построения, свойственные геометрическому подходу при построении ОТО. Можно построить мир из разного числа измерений (используют 11- и 26-мерные модели), но 11-мерные наиболее интересны и красивы с математической точки зрения: 7 — минимальное число скрытых измерений пространства-времени, которые допускают включение в теорию трех негравитационных сил, а 4 — обычные измерения пространства-времени. Четыре известных взаимодействия рассматривают как геометрические конструкции, имеющие более пяти измерений.
Теория суперструн разрабатывается с середины 80-х гг. XX в. наряду с супергравитацией. Эту теорию начали развивать английский ученый М. Грин и американский ученый Дж. Шварц. Они сопоставили частицам вместо точки одномерную струну, помещенную в многомерное пространство. Эта теория, заменив точечные частицы крошечными энергетическими петлями, устранила абсурдности, возникающие при расчетах. Космические струны — это экзотические невидимые образования, порожденные теорией элементарных частиц. В этой теории отражена иерархичность понимания мира — возможность того, что не существует окончательного основания для физической реальности, а есть только последовательность все меньших и меньших частиц. Существуют и очень
84

массивные частицы, и около тысячи частиц без массы. У каждой струны, имеющей планковский размер (10-33 см), при этом может быть бесконечно много типов (или мод) колебаний. Как вибрация струн скрипки порождает различные звуки, так и вибрация этих струн может генерировать все силы и частицы. Суперструны позволяют понять киральность (от греч. cheir— рука), тогда как супергравитация не может объяснить разницы между левым и правым — в ней поровну частиц каждой направленности. Теория суперструн, как и супергравитации, связана не с опытом, а с более характерным для математики устранением аномалий и расходимостей.
Американский физик Э. Виттен заключил, что теория суперструн — основная надежда на будущее физики, она не только учитывает возможность силы тяжести, но и утверждает ее существование, и тяжесть — есть следствие теории суперструн. Его технология, заимствованная из топологии и теории квантового поля, позволяет открывать глубокие симметрии между запутанными узлами высокой мерности. Была зафиксирована размерность, соответствующая относительно непротиворечивой теории, она равна 506. (За 1981—1990 гг. Виттен опубликовал 96 статей по теории суперструн, и они цитировались 12 105 раз другими физиками — пока недосягаемый рекорд цитируемости.)
С помощью теории суперструн можно объяснить «клочковатость» распределения вещества во Вселенной. Суперструны — это нити, оставшиеся от вещества только что родившейся Вселенной. Они невероятно подвижны и плотны, искривляют пространство вокруг себя, образуют клубки и петли, причем массивные петли могли бы создавать гравитационное притяжение, достаточно сильное, чтобы зарождались элементарные частицы, галактики и скопления галактик. К 1986 г. опубликовано много работ по космическим струнам, хотя сами они до сих пор не обнаружены. Найти суперструны считают возможным по искривлению пространства, которое они вызывают, действуя как гравитационная линза, или по испускаемым ими гравитационным волнам. Эволюцию суперструн разыгрывают на компьютерах, и на экране дисплея возникают картины, соответствующие наблюдаемым в космосе, — там тоже образуются волокна, слои и гигантские пустоты, в которых практически нет галактик.
Это необычайное сближение космологии и физики элементарных частиц в последние 30 лет дало возможность разобраться в сути процессов рождения пространства-времени и вещества в коротком интервале от 10-43 до 10-35 с после первичной сингулярности, называемой Большим Взрывом. Число размерностей 10 (супергравитация) или 506 (теория суперструн) — не окончательно, могут появиться и более сложные геометрические образы, но непосредственному обнаружению множество дополнительных размерностей не доступно. Истинная геометрия Вселенной, вероятно, не имеет трех пространственных измерений, что характерно лишь для нашей Метагалактики — наблюдаемой части Вселенной.
85

И все они, кроме трех, в момент Большого Взрыва (10—15 млрд лет назад) свернулись до планковских размеров. На больших расстояниях (до размеров Метагалактики 1028 см) геометрия евклидова и трехмерна, а на планковских — неевклидова и многомерна. Считают, что разрабатываемые сейчас Теории Всего Сущего (ТВС) должны объединить описания всех фундаментальных взаимодействий между частицами.
Совпадение предмета исследований изменило сложившуюся методологию наук. Астрономия считалась наблюдательной наукой, а ускорители — инструментом в физике элементарных частиц. Теперь стали строить предположения о свойствах частиц и их взаимодействиях в космологии, и проверить их стало возможным уже для нынешнего поколения ученых. Так, из космологии следует, что число фундаментальных частиц должно быть невелико. Это предсказание относилось к анализу процессов первичного синтеза нуклонов, когда возраст Вселенной составлял около 1 с, и сделано оно было в то время, когда казалось, что достижение больших мощностей на ускорителях приведет к увеличению числа элементарных частиц. Если бы частиц было много, Вселенная была бы сейчас иной.
Проверить теорию элементарных частиц должен был сверхпроводимый суперколлайдер диаметром 75 км. Его хотели построить в США (было потрачено 2 млрд долл. и прорыт в Техасе тоннель длиной 22 км), но Конгресс США остановил эти работы. Струны столь же малы по сравнению с протоном, как и протон по сравнению с размерами Солнечной системы. Для проверки теории суперструн нужна пространственная база размерами порядка 1000 св. лет, поэтому дальнейшее продвижение в проверке ТВС заморожено. Уязвимость теории суперструн в том, что пока она опирается лишь на умозрительные суждения. Да и вряд ли эта теория будет иметь практическую ценность; она устранит парадоксы квантовой механики, но физики не смогут доказать, что эта теория является окончательной, как доказывают теоремы математики; для них достаточно, что она работает и дает результаты, подтверждающиеся экспериментом.
Знакомясь с явлениями в простых системах и сопровождающими их взаимодействиями, будем искать и выделять общие правила, которым они подчиняются, выяснять область их приложения и пытаться применять их к более сложным системам. И огромная и сложная Вселенная предстанет в виде совокупности небольшого числа элементарных частиц, которые могут взаимодействовать только четырьмя способами и подчиняться небольшому числу фундаментальных законов. Однако при движении по пути познания мира все больше возникает вопросов и все труднее на них отвечать. Так, в неживой природе постоянно открывают все новые и новые субатомные частицы, и многие детали их поведения пока остаются неясными. Даже у кварков появляются неизвестные до сих пор качества. Где предел дробления материи и существует ли он? Что представляет из себя физический вакуум? Что есть частица и каково соотно-
86

шение между реальными и виртуальными состояниями, когда частица начинает проявлять свойства волны, и можно ли уловить этот момент современными приборами? В физике оказалось много удивительных совпадений, которые не могут быть поняты как чистые случайности или чистые закономерности. Можно проследить взаимные превращения порядка в хаос, рождение законов и упорядоченность хаоса, но возможно ли управление этими процессами?
Мы плохо представляем себе даже состав и строение внутренних областей Земли, хотя получены разнообразные сведения о составе, строении, движениях и жизненных циклах звезд и других небесных объектов. Человечество вышло за пределы атмосферы, на разных планетах побывали космические станции и лаборатории, на Землю доставлены обильная информация и образцы грунта других планет. Но мы не можем уверенно определить наличие жизни вне Земли, ничего не знаем о происхождении и границах Вселенной. Почему мир именно таков и каково будущее нашей планеты и нашей солнечной системы? В живой природе как в целом, так и в отдельных организмах крут неясного еще более широк. Нам известно многое об общих функциях различных органов и тканей, об их взаимодействии, но попытки описать функции этих органов через процессы в клетках далеки от желаемого завершения и понимания. Огромное внимание привлечено к проблеме изучения деятельности отдельной живой клетки и функций, выполняемых колоссальным количеством входящих в клетку химических соединений, которые состоят из более чем 1014 атомов. При целостном объяснении многих закономерностей в разных областях знания на первый план выходят проблемы симметрии неживой природы и асимметрии живой.
Возможно, при огромных значениях энергии все взаимодействия удастся соединить и получится Теория Всего Сущего (ТВС). Тогда мир будет описываться единообразно. Но что такое красивое и элегантное описание скажет об явлениях, придающих смысл нашей жизни? И может ли когда-нибудь такая теория быть подтверждена экспериментами, которые становятся невообразимо дорогими?!

Вопросы для самопроверки и повторения

  1. Как определяют возраст археологической находки, нашей планеты? Каков диапазон временных интервалов во Вселенной?
  2. Как измеряют расстояния в микромире? Дайте понятие о метрической системе. Где на Земле можно наиболее приблизиться к ее центру?
  3. Как измеряют время на интервалах, меньших 1 с? Какими приборами? Охарактеризуйте свойства времени в различных уровнях познания.
  4. Как измерили размеры Земли, Луны, Солнца? Каков диапазон расстояний во Вселенной? Как оценили размер Галактики, Вселенной?
  5. Какие движения Земли легли в основу календаря, какие календари используют сейчас; с чем связаны их несовершенства?

87

  1. Как определяют расстояния до звезд? Что такое «параллакс» и «звездная величина»?
  2. Поясните, как изменились представления о пространстве и времени Ньютона в связи с созданием теории относительности. Что такое размерность пространства?
  3. Охарактеризуйте концепции близко- и дальнедействия. Поясните понятие «поле». Кто и как создавал теорию электромагнитного поля?
  4. Какие фундаментальные взаимодействия выделены в физике и почему они так названы?
10.            В чем суть концепции атомизма? Как развивалась концепция ато
мизма и как она связана с современными проблемами построения еди
ной физической теории?
.

Комментарии (2)
Обратно в раздел Наука












 





Наверх

sitemap:
Все права на книги принадлежат их авторам. Если Вы автор той или иной книги и не желаете, чтобы книга была опубликована на этом сайте, сообщите нам.