Библиотека

Теология

Конфессии

Иностранные языки

Другие проекты







Ваш комментарий о книге

Концепции современного естествознания

ОГЛАВЛЕНИЕ

13. Квантовая механика
14. Этапы развития квантовой механики
15. Понятие биохимии, история ее появления
16. Белозерский Андрей Николаевич и его научные работы
17. Общие понятия и история биофизики
18. Луиджи Гальвани, его теория. Спор с Вольтом
19. Однородность времен
и
20. Непрерывность и однонаправленность времени

13. Квантовая механика

Квантовая механика – это теория, которая устанавливает способ описания и законы движения микрочастиц (элементарных частиц, атомов, молекул, атомных ядер) и их систем, а также связь величин, характеризующих частицы и их системы, с физическими величинами, непосредственно измеряемыми на опыте.
Квантовая механика помогла человечеству описать и осознать такие явления, как:
1) ферромагнетизм твердых тел;
2) сверхтекучесть твердых тел;
3) сверхпроводимость твердых тел;
4) была объяснена природа и происхождение нейтронных звезд, белых карликов и других астрофизических объектов.
На этом значение квантовой механики не заканчивается.
В теории квантовая механика делится на два вида:
1) нерелятивистскую квантовую механику;
2) релятивистскую квантовую механику.
Различие релятивистской и нерелятивистской квантовой механики. Естественно, что если существует два направления квантовой механики, то значит, они должны противоречить друг другу. Через это противоречие можно просмотреть значение как нерелятивистской, так и релятивистской квантовой механики.
Вот эти характеристики, различающие оба направления:
1) нерелятивистская квантовая механика более «строгая», это законченная фундаментальная физическая теория, главной особенностью которой является ее непротиворечивость. Релятивистская квантовая механика является более «мягкой», она допускает наличие противоречий в теории;
2) в нерелятивистской теории принято считать, что информация, помогающая взаимодействию, передается мгновенно. Релятивистская же квантовая механика утверждает, что взаимодействие распространяется со строго определенной скоростью. Следовательно, должно существовать что-то, что будет способствовать такой передаче. И этим «помощником» является физическое поле. Одним из основоположников квантовой механики можно назвать Планка. Он первым выступил против существовавшей в то время теории теплового излучения. В основе теории теплового излучения лежала статистическая физика и классическая электродинамика. Эти две отрасли науки не дополняли друг друга, а наоборот, приводили к противоречию всю теорию теплового излучения.
Суть его точки зрения заключается в том, что свет излучается не непрерывно, а порциями. А точнее – дискретными порциями энергии, т. е. квантами.
В квантовой механике выделяют так называемые дискретные состояния. Смысл данного состояния в том, что тело большого масштаба непрерывно изменяет свою скорость. Причем изменение этой скорости может происходить как в сторону ее увеличения, так и в сторону ее уменьшения. Для изменения скорости имеют большое значение разнообразные физические явления. Именно эти явления способствуют увеличению скорости или же, наоборот, ее уменьшению.

14. Этапы развития квантовой механики

Этапы развития квантовой механики выглядят так:
1) в 1905 г. Альберт Эйнштейн построил теорию фотоэффекта. Данная теория была построена с целью развития идей Планка. Эйнштейн предположил, что свет не только испускается и поглощается, но и распространяется квантами. Следовательно, дискретность присуща самому свету;
2) в 1913 г. Бор применяет идею квантов по отношению к планетарной системе атомов. Данная идея Бора привела к научному парадоксу. Согласно Бору, радиус орбиты электрона постоянно уменьшался. Электрон в конце концов должен был просто «упасть» на ядро. Бор решил, что электрон испускает свет не постоянно, а лишь тогда, когда он переходит надру-гую орбиту;
3) в 1922 г. американец Комптон доказал, что рассеяние света происходит путем столкновения двух частиц;
4) эффект Комптона привел также к парадоксу. Он утверждал о корпускулярно-волновой природе света. И это было явное противоречие: эти два явления не могли смешиваться. В 1924 г. французский ученый Луи де Бройль выдвинул теорию, согласно которой каждой частице надо поставить волну, которая связана с импульсом частицы;
5) австриец Шредингердоказал гипотезу де Бройля. Шредингер придумал уравнение, которое соответствует поведению волн де Бройля. Данное уравнение получило название «уравнение Шредингера»;
6) в 1926 г. ученые-физики проводили опыты, которые экспериментально окончательно подтвердили теорию де Бройля;
7) в 1927 г. Дирак придумывает свое уравнение, которое становится главным аргументом релятивистской квантовой механики. Это уравнение описывает движение электрона во внешнем силовом поле.
Окончательно квантовая механика как последовательная теория сформировалась благодаря трудам немецкого ученого – физика В. Гейзенберга, создавшего формальную схему. Особенностью данной схемы было то, что вместо математических координат и математических скоростей фигурировали абстрактные величины, так называемые матрицы.
Работы Гейзенберга были развиты другими учеными (например, Борном, Иорданом и др.). Работа немецкого физика Гейзенберга стала основой для матричной механики.
Также Гейзенберг является автором гипотезы о том, что любая физическая система никогда не может находиться в состоянии, в котором координаты ее центра инерции и импульса принимают одновременно равные значения.
Этот принцип известен в науке как «соотношение неопределенностей».

15. Понятие биохимии, история ее появления

Биохимия – это наука, которая изучает соединения углерода с другими элементами, т. е. органическими элементами и законами их превращения. Эта наука изучает химические вещества, их структуру и распределение в организме.
Использование законов биохимии относится к глубокой древности. Термин «органическая химия» был введен в 1827 г. ученым Й. Берцелиусом.
Все началось с того, что была подорвана точка зрения, согласно которой в синтезе присутствует так называемая «жизненная сила». Это произошло после того, как в 1828 г. Ф. Велер исследовал мочевину.
На органической химии основаны все жизненные процессы, потому что углероды способны соединяться со многими элементами и могут образовывать молекулы самого разного состава и строения (например, цепного, циклического и т. д.). Именно этой способностью углерода и обусловлено такое множество органических соединений: к 1990-м гг. XX в. их число составляло более 10 млн.
И весь этот процесс синтеза углерода с различными элементами привел к тому, что стали появляться отдельные отрасли науки и новые отрасли промышленности.
Сама биохимия состоит из общей и аналитической химии, которые были ее «родителями». На сегодняшний день органическая химия уже сама давно обзавелась «потомством». В середине 1920-х гг. XX в. произошло выделение молекулярной биологии. В связи с ростом народного хозяйства в отдельную науку выделилась техническая биохимия.
Молекулярная биология занимается тем, что исследует основные свойства и проявления жизни на молекуляр-
ном уровне, а также выясняет, каким образом и в какой мере рост и развитие организмов, хранение и передача наследственной информации и многие другие явления обусловлены структурой и свойствами биологических белков и нуклеиновых кислот, т. е. макромолекул.
Молекулярная биология тесно связана не только с органической химией, но и с:
1) биофизикой;
2) генетикой;
3) микробиологией.
Две точки зрения возникновения микробиологии:
1) молекулярная биология выделилась в 1920-е гг. XX в. В это время происходит активное внедрение в биологию идей и методов, которые были позаимствованы из физики. Такое заимствование произошло для того, чтобы объяснить ряд явлений, таких как мышечное сокращение, наследственность и многие другие;
2) молекулярная биология возникла в 1953 г. Именно в этом году Дж. Уотсон и Ф. Крик разработали свою идею двойной спирали ДНК.
Молекулярную биологию, биофизику, биохимию и т. п. включают в единый комплекс наук – физико-химическую биологию.

16. Белозерский Андрей Николаевич и его научные работы

Белозерский Андрей Николаевич родился в г. Ташкенте 16 августа 1905 г. Он стал выдающимся российским биохимиком, лауреатом множества всесоюзных и международных премий.
В 1913 г. оба родителя Андрея Николаевича умирают, и он остается круглым сиротой. Ему удается, не имея среднего образования, поступить в высшее учебное заведение – в Среднеазиатский государственный университет на физико-математический факультет. Позже он начинает работать в этом университете. Поначалу Белозерский устроился работать лаборантом. По прошествии нескольких лет, в 1925 г., Андрей Николаевич уже приступает к преподавательской деятельности.
Андрей Николаевич Белозерский попадает под положительное влияние известного биолога А. В. Благовещенского. Именно под его руководством Белозерский готовит свою первую научную работу, которая была посвящена концентрации водородных ионов в вытяжках из листьев некоторых горных растений.
Белозерский занялся тем, что стал искать ДНК не только у животных, но и у растений. Спустя какое-то время, время упорного труда, он обнаружил ДНК у обычного гороха, а затем еще у ряда других растений и даже у бактерии. Он сделал вывод, что ДНК присуща не только животным. ДНК присуща вообще всем живым организмам. Это открытие принесло Андрею Николаевичу мировую известность. Своим открытием он помог возродиться в Советском Союзе такой науке, как генетика. Андрея Николаевича приглашают посетить ряд престижных научных симпозиумов, которые должны пройти в зарубежных странах.
Имя Белозерского связано с открытием не только ДНК у растений, но и рядом других открытий, которые заслуживают внимания. В 1957 г. Белозерский и Спирин высказывают предположение, согласно которому клетки содержат не только ДНК, но и РНК. Вслед за этим Андрей Николаевич успешно защищает свою докторскую диссертацию.
В 1958 г. Андрей Николаевич Белозерский избирается членом-корреспондентом Академии наук СССР. Спустя три года, в 1962 г., Белозерский становится действительным членом Академии наук СССР, а еще через девять лет произошло нечто вообще малообъяснимое: Андрей Николаевич Белозерский был избран вице-президентом Академии наук СССР.
Также благодаря усилиям Белозерского была организована современная лаборатория биохимии и микроорганизмов (тогда она называлась лабораторией антибиотиков); кафедра вирусологии на биолого-почвенном факультете МГУ в 1964 г.; при его поддержке был создан Институт белка Академии наук в г. Пущино в 1968 г. В 1965 г. Белозерский в Московском государственном университете создал межфакультетскую лабораторию биоорганической химии. Для того чтобы показать, как важен вклад Андрея Николаевича Белозерского в развитие молекулярной биологии, организованная им в 1965 г. лаборатория была переименована в Институт физико-химической биологии имени А. Н. Белозерского.

17. Общие понятия и история биофизики

Биофизика – это наука, которая изучает физические и физико-химические явления, которые происходят в живых организмах. Также данная наука изучает структуру и свойства биополимеров, а также влияние различных физических факторов на живые организмы и живые системы.
Первые в мире попытки применить физические методы и идеи к изучению живого организма были предприняты еще в XVII в.
Дальнейшее развитие биофизики связано с изучением:
1) работ Луиджи Гальвани. В своих работах он выдвигал существование «животного электричества»;
2) работ Г. Гельмгольца, а также с изучением и развитием акустики и оптики;
3) механики и энергетики живых организмов;
4) работ П. П. Лазарева и работ Ю. Бернштейна, а также с изучением ионной и мембранной теории возбуждения.
Биофизика изучает целостные системы, не разлагая их на составные части. Если же будут выделяться составные части, то в процессе такого «выделения» частного из целого будут утрачены важные для дальнейшего нормального существования свойства целостной системы. Это прежде всего негативно отразится на самой биофизической науке. Полимеры нормально функционируют исключительно в условиях ненарушенной, целостной системы. Поэтому биофизики должны изобрести новые приемы и методы исследования. Главной особенностью таких методов является то, что они изучают полимеры именно в тех условиях, в которых они и живут.
Если были нарушены важные для дальнейшего нормального существования свойства и процессы клетки, то, соответственно, изменяются и ее физические и химические параметры. При определенных воздействиях клетка может потерять ряд своих способностей (например, способность к поляризации), хотя внешний вид клеток может оставаться неизменным.
Но клетка может не только потерять свои способности, но и приобрести так называемые артефакты.
Артефакт для биофизики – это вновь образованные структуры и соединения. Главная особенность артефактов заключается в том, что их нет в неповрежденных, т. е. в целых клетках.
Перед биофизической наукой стоит ряд сложных теоретических и практических задач. Эти задачи входят в компетенцию биофизики, а другие науки могут оказывать ей помощь:
1) вопрос размена энергии в биологическом субстрате;
2) исследование роли субмикроскопическихи физико-химических свойств и структур в жизнедеятельности клеток и тканей;
3) возникновение возбуждения и происхождение биоэлектрических потенциалов;
4) вопросы авторегулирования физико-химических процессов в живых организмах.
Одну из самых заметных ролей в истории появления и развития биофизики сыграл выдающийся ученый Луиджи Гальвани.

18. Луиджи Гальвани, его теория. Спор с Вольтом

Луиджи Гальвани (1737–1798 гг.) – выдающийся ученый, он занимался анатомией и физиологией. Гальвани стал одним из основателей учения об электричестве. Луиджи Гальвани также известен тем, что он первый обратил внимание на то, что электрические явления возникают при мышечном сокращении (этот эффект, а точнее, явление, был назван «животным электричеством»).
Гальвани поступил в местный университет, после окончания которого в 1759 г. начал готовить свою научную диссертацию. На свою научную работу Луиджи Гальвани тратит целые годы. В 1762 г. Гальвани с успехом защищает свою диссертацию, которая была названа «О костях». Успех Гальвани был настолько огромен, что он сразу же занял пост главы кафедры анатомии университета, который он сравнительно недавно окончил.
Параллельно с научной работой Луиджи Гальвани занимался и практикой: хирургией и акушерством. Через 12 лет, в 1774 г., Гальвани, проводя опыт над лягушкой, открывает «животное электричество». Луиджи Гальвани заинтересовался этим явлением как физиолог. Его заинтересовала способность мертвого препарата проявлять себя как живой материал. Он менял положение металлического провода в теле лягушки, менял источники тока и множество других параметров.
Проводя такой опыт, Луиджи Гальвани хотел использовать в качестве источника тока природное электричество, но погода стояла ясная и на небе не было ни облачка. Ученый чисто случайно прижал электроды, которые были воткнуты в спинной мозг лягушки, к железной решетке, на которой и лежала лягушка. Гальвани был очень сильно удивлен, когда увидел, что появились такие же сокращения, как и во время опытов, которые проводились во время грозы.
Еще больше Луиджи Гальвани был удивлен, когда выяснил, что мышцы сокращаются и в то время, когда внешний источник тока отсутствует. Оказалось, что мышцы
начинают сокращаться и при простом наложении ^™ на них двух пластин разных металлов, соединенных проводником.
Этими опытами физиолога Луиджи Гальвани заинтересовался другой известный ученый – физик Алессандро Вольта. Вольта высказал предположение, что электричество заключается в тех двух пластинах разных металлов, которые использовал Гальвани. И электричество возникает при соединении этих пластин проводником. Таким образом, физик Алессандро Вольта стал оппонентом в научном споре физиолога Луиджи Гальвани.
Так начался величайший спор между двумя учеными. Алессандро Вольта настаивал на том, что источник электричества – это металлы, а другой настаивал на том, что источник тока – это животные. Оба ученых проводили эксперименты в подтверждение своей теории. Луиджи Гальвани, как ему показалось, нашел неопровержимые доказательства своей точки зрения, которая состоит из двух элементов:
1) доказал, что электричество возникает и без участия металлов;
2) сняв кожный покров с нерва лапки лягушки, Луиджи Гальвани поднес его к мышцам. Мышца начала сокращаться.
Алессандро Вольта, однако, не успокоился и не отступился. Он тоже привел весьма и весьма убедительные доказательства в пользу своей точки зрения.
Хотя и Гальвани, и Вольта считали, что в споре прав только один из них, по прошествии продолжительного периода времени стало ясно, что обе точки зрения имеют право на существование.
Важнейшим вкладом Алессандро Вольта в развитие науки было изобретение им принципиально нового источника постоянного тока. В 1800 г. Алессандро Вольта создал так называемый вольтов столб. Это был первый химический источник электричества. Имя Алессандро Вольта было увековечено тем, что в честь него назвали единицу разности потенциалов электрического поля (вольт). Свое заслуженное признание Вольта получил в XIX в.

19. Однородность времени

Согласно словарю русского языка С. И. Ожегова, время определяется в восьми понятиях:
1) в философском смысле это одна из основных форм (наряду с пространством) существования бесконечно развивающейся материи;
2) продолжительность, длительность чего-нибудь, измеряемая секундами, минутами, часами;
3) промежуток той или иной длительности, в который совершается что-нибудь, последовательная смена часов, дней, лет;
4) определенный момент, в который происходит что-нибудь;
5) период, эпоха;
6) пора дня, года;
7) подходящая, удобная пора, благоприятный момент;
8) то же, что досуг.
Это говорит о том, что время – это понятие неоднородное. Оно может употребляться в различных смыслах. Теория концепции современного естествознания, как и философия, изучает понятие времени в общефилософском смысле.
Важную роль в понимании времени сыграла теория относительности Альберта Эйнштейна. До появления этой теории в научном мире преобладало учение Исаака Ньютона, которое утверждало, что время абсолютно. Появление теории относительности сыграло главную роль в преодолении учения Исаака Ньютона. Альберт Эйнштейн утверждал, что существует принципиальная связь времени с материей (т. е. с массой) и движением. Согласно теории относительности, существует возможность относительного замедления времени при скоростях, близких к скорости света (это так называемый «парадокс близнецов»).
Время изучается не только в философии, физике, концепции современного естествознания, но и в социальных науках. В социальных науках важное место заняло понятие объективного исторического времени. Оно, это объективное историческое время, стало основой для культуры, истории и т. д.
Что же дало философии изучение времени? На этот вопрос нельзя ответить кратко, так как время стало одной из основ для создания множества научных концепций:
1) марксизма;
2) позитивизма;
3) эволюционизма;
4) учения Сорокина;
5) русского космизма.
Время характеризуется тремя основными чертами:
1) однородностью;
2) непрерывностью;
3) однонаправленностью времени (или необратимостью времени).
Однородность времени означает, что любые явления, которые происходят в одних и тех же условиях, но в разные периоды времени, протекают одинаково.

20. Непрерывность и однонаправленность времени

Непрерывность ученые-философы относят к монологическим свойствам пространства и времени. В чем же заключается непрерывность?
Непрерывность времени не только в философии, но и в других науках подразумевает, что между двумя отрезками времени (несмотря на то что они располагаются очень близко) всегда можно выделить третий отрезок времени.
Жизнь на Земле, смена поколений новыми поколениями и есть такая непрерывность времени. Непрерывность жизни обеспечивается процессами синтеза и распада, каждый организм отдает или выделяет то, что используют другие организмы.
Мамардашвили М. К. пишет, что следующий момент не вытекает из предыдущего момента. Проще говоря, если мы сегодня сделаем что-то очень хорошо, это не означает, что и завтра то же самое будет сделано так же хорошо (т. е. как и сегодня) и вообще всегда это будет делаться так же хорошо. Декарт в своих научных работах утверждал, что для воспроизводства субстанции нам потребуется не меньшая сила, чем на ее творение.
Время нельзя остановить, так как оно не зависит от воли и сознания человека. Это явление не имеет ни перерывов, ни остановок, и оно никогда не делает пауз.
В глубокой древности ученые считали, что пространство – это пустота, а время всегда едино для всей нашей Вселенной. На сегодня достоверно известно, что представление древних ученых и философов, описанное выше, неверно. Немалую роль в опровержении данной точки зрения сыграла теория относительности Альберта Эйнштейна, о которой уже упоминалось выше. В частности, Эйнштейн доказал, что время может как бы преломляться, изменять свой ход («парадоксблиз-нецов»).
Однонаправленность времени – это логическая последовательность сменяющих друг друга явлений, событий и т. д. Из данного свойства времени можно сделать вывод о том, что возникновению следствия всегда предшествует формирование причины. Наоборот, быть НИКОГДА не может: нельзя сначала испечь хлеб, а затем помолоть муку, для того чтобы испечь именно данную буханку хлеба. Если же формирование причины предшествует возникновению следствия, то это является нарушением правил формальной логики.
В философии свойство однонаправленности также называется «стрела времени». Течение времени действительно очень похоже на полет стрелы:
1) стрела была выпущена – появилась Вселенная;
2) стрела находится в процессе полета – жизнь развивается все сильнее и сильнее;
3) стрела падает – настает конец всему живому. Однако Анри Бергсон, один из ведущих французских философов XX в., утверждал, что возможно как бы совмещение временных пластов. Свою теорию длительности и времени он основал на смешении воспоминаний из прошлого с настоящим временем, настоящими событиями. Анри Бергсон считал, что такое смешение временных пластов является актом того, что познано и, того, что только познается.

.

Ваш комментарий о книге
Обратно в раздел Наука

Список тегов:
квантовая механика 











 





Наверх

sitemap:
Все права на книги принадлежат их авторам. Если Вы автор той или иной книги и не желаете, чтобы книга была опубликована на этом сайте, сообщите нам.